×

Scaling laws for diffusion on (trans)fractal scale-free networks. (English) Zbl 1390.28021

Summary: Fractal (or transfractal) features are common in real-life networks and are known to influence the dynamic processes taking place in the network itself. Here, we consider a class of scale-free deterministic networks, called \((u, v)\)-flowers, whose topological properties can be controlled by tuning the parameters \(u\) and \(v\); in particular, for \(u>1\), they are fractals endowed with a fractal dimension df, while for \(u = 1\), they are transfractal endowed with a transfractal dimension \(\widetilde{d}_f\). In this work, we investigate dynamic processes (i.e., random walks) and topological properties (i.e., the Laplacian spectrum) and we show that, under proper conditions, the same scalings (ruled by the related dimensions) emerge for both fractal and transfractal dimensions.{
©2017 American Institute of Physics}

MSC:

28A80 Fractals
90B10 Deterministic network models in operations research
05C81 Random walks on graphs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Newman, M. E., Networks: An Introduction (2010) · Zbl 1195.94003
[2] Barrat, A.; Barthélemy, M.; Vespignani, A., Dynamical Processes on Complex Networks (2008) · Zbl 1198.90005
[3] Albert, R.; Barabási, A.-L., Rev. Mod. Phys., 74, 47 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[4] Barabási, A.-L.; Ravasz, E.; Vicsek, T., Physica A, 299, 559 (2001) · Zbl 0972.57003 · doi:10.1016/S0378-4371(01)00369-7
[5] Bollt, E. M.; ben-Avraham, D., New J. Phys., 7, 26 (2005) · doi:10.1088/1367-2630/7/1/026
[6] Tejedor, V.; Bénichou, O.; Voituriez, R., Phys. Rev. E, 80, 065104(R) (2009) · doi:10.1103/PhysRevE.80.065104
[7] Agliari, E.; Burioni, R., Phys. Rev. E, 80, 031125 (2009) · doi:10.1103/PhysRevE.80.031125
[8] Berker, A. N.; Ostlund, S., J. Phys. C, 12, 4961 (1979) · doi:10.1088/0022-3719/12/22/035
[9] Song, C.; Havlin, S.; Makse, H. A., Nature, 433, 392 (2005) · doi:10.1038/nature03248
[10] Song, C.; Havlin, S.; Makse, H. A., Nat. Phys., 2, 275 (2006) · doi:10.1038/nphys266
[11] Rozenfeld, H. D.; Havlin, S.; ben-Avraham, D., New J. Phys., 9, 175 (2007) · doi:10.1088/1367-2630/9/6/175
[12] Rozenfeld, H. D.; Gallos, L. K.; Song, C.; Makse, H. A.; Meyers, R. A., Fractal and transfractal scale-free networks, Encyclopedia of Complexity and Systems Science (2009)
[13] Zhang, Z. Z.; Xie, W. L.; Zhou, S. G.; Gao, S. Y.; Guan, J. H., Europhys. Lett., 88, 10001 (2009) · doi:10.1209/0295-5075/88/10001
[14] Hwang, S.; Yun, C. K.; Lee, D. S.; Kahng, B.; Kim, D., Phys. Rev. E, 82, 056110 (2010) · doi:10.1103/PhysRevE.82.056110
[15] Zhang, Z. Z.; Liu, H.; Wu, B.; Zou, T., Phys. Rev. E, 83, 016116 (2011) · doi:10.1103/PhysRevE.83.016116
[16] Zhang, Z. Z.; Yang, Y. H.; Gao, S. Y., Eur. Phys. J. B, 84, 331 (2011) · doi:10.1140/epjb/e2011-20564-4
[17] Meyer, B.; Agliari, E.; Bénichou, O.; Voituriez, R., Phys. Rev. E, 85, 026113 (2012) · doi:10.1103/PhysRevE.85.026113
[18] van Mieghen, P., Graph Spectra for Complex Networks (1983)
[19] Nakkayama, T.; Meyers, R. A., Fractal structures in condensed matter physics, Encyclopedia of Complexity and Systems Science (2009)
[20] Donetti, L.; Muñoz, M., J. Stat. Mech., 2004, P10012 · Zbl 1073.82596 · doi:10.1088/1742-5468/2004/10/P10012
[21] Agliari, E.; Contucci, P.; Giardiná, C., A random walk in diffusion phenomena and statistical mechanics, Advances in Disordered Systems, Random Processes and Some Applications (2016)
[22] Redner, S., A Guide to First-Passage Processes (2007) · Zbl 1128.60002
[23] Meyer, B.; Chevalier, C.; Voituriez, R.; Bénichou, O., Phys. Rev. E, 83, 051116 (2011) · doi:10.1103/PhysRevE.83.051116
[24] Condamin, S.; Bénichou, O.; Moreau, M., Phys. Rev. Lett., 95, 260601 (2005) · doi:10.1103/PhysRevLett.95.260601
[25] Condamin, S.; Bénichou, O.; Tejedor, V.; Voituriez, R.; Klafter, J., Nature, 450, 77 (2007) · doi:10.1038/nature06201
[26] Bénichou, O.; Chevalier, C.; Klafter, J.; Meyer, B.; Voituriez, R., Nat. Chem., 2, 472 (2010) · doi:10.1038/nchem.622
[27] Siboni, N. H.; Raabe, D.; Varnik, F., Europhys. Lett., 111, 48004 (2015) · doi:10.1209/0295-5075/111/48004
[28] Eichner, J. F.; Kantelhardt, J. W.; Bunde, A.; Havlin, S., Phys. Rev. E, 75, 011128 (2007) · doi:10.1103/PhysRevE.75.011128
[29] Moloney, N. R.; Davidsen, J., Phys. Rev. E, 79, 041131 (2009) · doi:10.1103/PhysRevE.79.041131
[30] Santhanam, M. S.; Kantz, H., Phys. Rev. E, 78, 051113 (2008) · doi:10.1103/PhysRevE.78.051113
[31] Hwang, S.; Lee, D.-S.; Kahng, B., Phys. Rev. Lett., 109, 088701 (2012) · doi:10.1103/PhysRevLett.109.088701
[32] ben-Avraham, D.; Havlin, S., Diffusion and Reactions in Fractals and Disordered Systems (2004)
[33] Metzler, R.; Oshanin, G.; Redner, S., First-Passage Phenomena and Their Applications (2014) · Zbl 1291.00067
[34] Haynes, C. P.; Roberts, A. P., Phys. Rev. E, 78, 041111 (2008) · doi:10.1103/PhysRevE.78.041111
[35] Alexander, A.; Orbach, R., J. Phys. Lett., 43, 625 (1982) · doi:10.1051/jphyslet:019820043017062500
[36] Rammal, R.; Toulouse, G., J. Phys. Lett., 44, 13 (1983) · doi:10.1051/jphyslet:0198300440101300
[37] Cosenza, M.; Kapral, R., Phys. Rev. A, 46, 1850 (1992) · doi:10.1103/PhysRevA.46.1850
[38] Jayanthi, C.; Wu, S.; Cocks, J., Phys. Rev. Lett., 69, 1955 (1992) · doi:10.1103/PhysRevLett.69.1955
[39] Liu, H.; Dolgushev, M.; Qi, Y.; Zhang, Z., Sci. Rep., 5, 9024 (2015) · doi:10.1038/srep09024
[40] Lin, Y.; Zhang, Z., Phys. Rev. E, 87, 062140 (2013) · doi:10.1103/PhysRevE.87.062140
[41] Agliari, E.; Tavani, F., Sci. Rep., 7, 39962 (2017) · doi:10.1038/srep39962
[42] Zhang, Z. Z.; Liu, H. X.; Wu, B.; Zhou, S. G., Europhys. Lett., 90, 68002 (2010) · doi:10.1209/0295-5075/90/68002
[43] Zhang, Z. Z.; Lin, Y.; Guo, X., Phys. Rev. E, 91, 062808 (2015) · doi:10.1103/PhysRevE.91.062808
[44] Peng, J. H.; Xiong, J.; Xu, G. A., J. Stat. Phys., 5, 1196 (2015) · Zbl 1323.05070 · doi:10.1007/s10955-015-1225-x
[45] Peng, J. H.; Agliari, E.; Zhang, Z. Z., Chaos, 25, 073118 (2015) · Zbl 1374.82014 · doi:10.1063/1.4927085
[46] Gut, A., Probability: A Graduate Course (2005) · Zbl 1076.60001
[47] Hwang, S.; Lee, D.-S.; Kahng, B., Phys. Rev. E, 87, 022816 (2013) · doi:10.1103/PhysRevE.87.022816
[48] Levin, D. A.; Peres, Y.; Wilmer, E., Markov Chains and Mixing Times (2008)
[49] Biggs, N., Algebraic Graph Theory (1993)
[50] Mohar, B., Discrete Math., 109, 171 (1992) · Zbl 0783.05073 · doi:10.1016/0012-365X(92)90288-Q
[51] Girvan, M.; Newman, M., Proc. Natl. Acad. Sci. U.S.A., 99, 7821 (2002) · Zbl 1032.91716 · doi:10.1073/pnas.122653799
[52] Lovász, L., Combinatorics: Paul Erdös Is Eighty (1993)
[53] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F., Phys. Rev. E, 65, 066122 (2002) · doi:10.1103/PhysRevE.65.066122
[54] Brualdi, R. A., Introductory Combinatorics (2001) · Zbl 0915.05001
[55] Weiss, G. H., Aspects and Applications of the Random Walk (1994) · Zbl 0925.60079
[56] Notice that the radius of convergence of a probability generating function must be at least 1, and, in particular, the normalizaton of \(p_k\) yields to \(\Phi_T(z) = 1\). Also, a diverging derivative as \(z \to 1\) means that the first moment is diverging as well and similarly for higher order moments. For the quantities considered here (i.e., FPT, FRT, and GFPT), given the finiteness of the underling structure, the moments are all finite. We also recall that the probability generating function of \(p_k\) can also be seen as the (discrete) Laplace transformation of \(p_k\). In this perspective, the discrete function to be transformed does not need to be normalized.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.