×

zbMATH — the first resource for mathematics

A generalized linear mixed model for longitudinal binary data with a marginal logit link function. (English) Zbl 1220.62093
Summary: Longitudinal studies of a binary outcome are common in the health, social, and behavioral sciences. In general, a feature of random effects logistic regression models for longitudinal binary data is that the marginal functional form, when integrated over the distribution of the random effects, is no longer of logistic form. Z. Wang and T. A. Louis [Biometrika 90, 765–775 (2003)] proposed a random intercept model in the clustered binary data setting where the marginal model has a logistic form. An acknowledged limitation of their model is that it allows only a single random effect that varies from cluster to cluster. We propose a modification of their model to handle longitudinal data, allowing separate, but correlated, random intercepts at each measurement occasion. The proposed model allows for a flexible correlation structure among the random intercepts, where the correlations can be interpreted in terms of Kendall’s \(\tau \). For example, the marginal correlations among the repeated binary outcomes can decline with increasing time separation, while the model retains the property of having matching conditional and marginal logit link functions. Finally, the proposed method is used to analyze data from a longitudinal study designed to monitor cardiac abnormalities in children born to HIV-infected women.

MSC:
62J12 Generalized linear models (logistic models)
62H20 Measures of association (correlation, canonical correlation, etc.)
62P10 Applications of statistics to biology and medical sciences; meta analysis
65C60 Computational problems in statistics (MSC2010)
Software:
Fahrmeir
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, P. S., Follmann, D. A., Wang, S. A. and Suh, E. B. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58 631-642. JSTOR: · Zbl 1210.62138 · doi:10.1111/j.0006-341X.2002.00631.x · links.jstor.org
[2] Bahadur, R. R. (1961). A representation of the joint distribution of responses to n dichotomous items. In Studies in Item Analysis and Prediction (H. Solomon, ed.). Stanford Mathematical Studies in the Social Sciences VI 158-168. Stanford Univ. Press. · Zbl 0103.36701
[3] Caffo, B., An, M.-W. and Rohde, C. (2007). Flexible random intercept models for binary outcomes using mixtures of normals. Comput. Statist. Data Anal. 51 5220-5235. · Zbl 1445.62191
[4] Caffo, B. and Griswold, M. (2006). A user-friendly introduction to link-probit-normal models. Amer. Statist. 60 139-145. · Zbl 05680683 · doi:10.1198/000313006X110203
[5] Diggle, P. J., Heagerty, P., Liang, K. Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data , 2nd ed. Oxford Univ. Press, Oxford. · Zbl 1031.62002
[6] Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models . Springer, New York. · Zbl 0980.62052
[7] Fitzmaurice, G. M. (1995). A caveat concerning independence estimating equations with multivariate binary data. Biometrics 51 309-317. · Zbl 0825.62479 · doi:10.2307/2533336
[8] Fitzmaurice, G. M., Laird, N. M. and Rotnitzky, A. G. (1993). Regression models for discrete longitudinal responses (with discussion). Statist. Sci. 8 248-309. · Zbl 0955.62614 · doi:10.1214/ss/1177010899
[9] Heagerty, P. J. (1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics 55 688-698. · Zbl 1059.62566 · doi:10.1111/j.0006-341X.1999.00688.x
[10] Heagerty, P. J. and Zeger, S. L. (2000). Marginalized multilevel models and likelihood inference (with comments and a rejoinder by the authors). Statist. Sci. 15 1-26.
[11] Hoel, P. G., Port, S. C. and Stone, C. J. (1971). Introduction to Probability Theory . Houghton Mifflin, Boston, MA. · Zbl 0258.60002
[12] Hougaard, P. (2000). Analysis of Multivariate Survival Data . Springer, New York. · Zbl 0962.62096
[13] Joe, H. (1997). Multivariate Models and Dependence Concepts . Chapman and Hall, London. · Zbl 0990.62517
[14] Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data . Wiley, New York. · Zbl 0504.62096
[15] Laird, N. M. (1988). Missing data in longitudinal studies. Stat. Med. 7 305-315.
[16] Lee, Y. and Nelder, J. A. (2004). Conditional and marginal models: Another review. Statist. Sci. 19 219-228. · Zbl 1100.62591 · doi:10.1214/088342304000000305
[17] Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22. JSTOR: · Zbl 0595.62110 · doi:10.1093/biomet/73.1.13 · links.jstor.org
[18] Lipshultz, S. E., Easley, K. A., Orav, E. J., Kaplan, S., Starc, T. J., Bricker, J. T., Lai, W. W., Moodie, D. S., McIntosh, K., Schluchter, M. D. and Colan, S. D. (1998). Left ventricular structure and function in children infected with human immunodeficiency virus: The prospective P2C2 HIV Multicenter Study. Pediatric Pulmonary and Cardiac Complications of Vertically Transmitted HIV Infection (P2C2 HIV) Study Group. Circulation 97 1246-1256.
[19] Lipshultz, S. E., Easley, K. A., Orav, E. J., Kaplan, S., Starc, T. J., Bricker, J. T., Lai, W. W., Moodie, D. S., Sopko, G. and Colan, S. D. (2000). Cardiac dysfunction and mortality in HIV-infected children: The Prospective P2C2 HIV Multicenter Study. Pediatric Pulmonary and Cardiac Complications of Vertically Transmitted HIV Infection (P2C2 HIV) Study Group. Circulation 102 1542-1548.
[20] Lipshultz, S. E., Easley, K. A., Orav, E. J., Kaplan, S., Starc, T. J., Bricker, J. T., Lai, W. W., Moodie, D. S., Sopko, G., Schluchter, M. D. and Colan, S. D. (2002). Cardiovascular status of infants and children of women infected with HIV-1 (P(2)C(2) HIV): A cohort study. Lancet 360 368-373.
[21] Lipsitz, S. R., Laird, N. M. and Harrington, D. P. (1991). Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association. Biometrika 78 153-160. JSTOR: · doi:10.1093/biomet/78.1.153 · links.jstor.org
[22] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models , 2nd ed. Chapman and Hall, New York. · Zbl 0744.62098
[23] Molenberghs, G. and Lesaffre, E. (1994). Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. J. Amer. Statist. Assoc. 89 633-644. · Zbl 0802.62063 · doi:10.2307/2290866
[24] Nelsen, R. B. (1999). An Introduction to Copulas . Springer, New York. · Zbl 0909.62052
[25] Neuhaus, J. M., Kalbfleisch, J. D. and Hauck, W. W. (1991). A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. Int. Statist. Rev. 59 25-35.
[26] Pinheiro, J. C. and Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Statist. 4 12-35.
[27] Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581-592. JSTOR: · Zbl 0344.62034 · doi:10.1093/biomet/63.3.581 · links.jstor.org
[28] Wang, Z. and Louis, T. A. (2003). Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution function. Biometrika 90 765-775. · Zbl 1436.62294 · doi:10.1093/biomet/90.4.765
[29] Wang, Z. and Louis, T. A. (2004). Marginalized binary mixed-effects with covariate-dependent random effects and likelihood inference. Biometrics 60 884-891. JSTOR: · Zbl 1274.62182 · doi:10.1111/j.0006-341X.2004.00243.x · links.jstor.org
[30] Zhao, L. P. and Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika 77 642-648. JSTOR: · doi:10.1093/biomet/77.3.642 · links.jstor.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.