×

Modelling and simulation of wildland fire in the framework of the level set method. (English) Zbl 1388.76434

Summary: Among the modelling approaches that have been proposed for the simulation of wildfire propagation, two have gained considerable attention in recent years: the one based on a reaction-diffusion equation, and the one based on the level set method. These two approaches, traditionally seen in competition, do actually lead to similar equation models when the level set method is modified taking into account random effects as those due to turbulent hot air transport and fire spotting phenomena. The connection between these two approaches is here discussed and the application of the modified level set method to test cases of practical interest is shown.

MSC:

76V05 Reaction effects in flows
76M20 Finite difference methods applied to problems in fluid mechanics
35K57 Reaction-diffusion equations
60H25 Random operators and equations (aspects of stochastic analysis)
80A25 Combustion

Software:

Multivac; WRF-SFIRE
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Sullivan, A.: A review of wildland fire spread modelling, 1990-present, 1: physical and quasi-physical models. Int. J. Wildland Fire 18, 349-368 (2009)
[2] Sullivan, A.: A review of wildland fire spread modelling, 1990-present, 2: empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369-386 (2009)
[3] Sullivan, A.: Wildland surface fire spread modelling, 1990-2007. 3: Simulation and mathematical analogue models. Int. J. Wildland Fire 18, 387-403 (2009)
[4] Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Meth. Eng. 54, 137-157 (2002) · Zbl 1098.76644
[5] Mandel, J., Bennethum, L.S., Beezley, J.D., Coen, J.L., Douglas, C.C., Kim, M., Vodacek, A.: A wildland fire model with data assimilation. Math. Comput. Simulat. 79, 584-606 (2008) · Zbl 1155.80005
[6] Babak, P., Bourlioux, A., Hillen, T.: The effect of wind on the propagation of an idealized forest fire. SIAM J. Appl. Math. 70, 1364-1388 (2009) · Zbl 1194.92070
[7] Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35, 341-372 (2003) · Zbl 1041.76057
[8] Mallet, V., Keyes, D.E., Fendell, F.E.: Modeling wildland fire propagation with level set methods. Comput. Math. Appl. 57, 1089-1101 (2009) · Zbl 1186.65140
[9] Rehm, R.G., McDermott, R.J.: Fire-front propagation using the level set method. Tech. Note 1611, Natl. Inst. Stand. Technol. (2009) · Zbl 0934.76096
[10] Pagnini, G., Massidda, L.: The randomized level set method to model turbulence effects in wildland fire propagation. In: Proc. of the Int. Conf. on Fire Behaviour and Risk (ICFBR2011), 126-131 (2012)
[11] Pagnini, G., Massidda, L.: Modelling turbulence effects in wildland fire propagation by the randomized level set method. CRS4 Technical Report 2012/PM12a, July 2012. Revised Version August 2014. http://publications.crs4.it/pubdocs/2012/PM12a/pagnini_massidda-levelset (2014)
[12] Filippi, J.B., Bosseur, F., Mari, C., Lac, C., Moigne, P.L., Cuenot, B., Veynante, D., Cariolle, D., Balbi, J.H.: Coupled atmosphere-wildland fire modelling. J. Adv. Model. Earth Syst. 1, 1-9 (2009)
[13] Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev 4, 591-610 (2011)
[14] Potter, B.E.: Atmospheric interactions with wildland fire behaviour—I. basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire 21, 779-801 (2012)
[15] Potter, B.E.: Atmospheric interactions with wildland fire behaviour—II. plume and vortex dynamics. Int. J. Wildland Fire 21, 802-817 (2012)
[16] Sardoy, N., Consalvi, J.L., Porterie, B., Fernandez-Pello, A.C.: Modeling transport and combustion of firebrands from burning trees. Combust. Flame 150, 151-169 (2007)
[17] Perryman, H.A.: A mathematical model of spot fires and their management implications. Master’s thesis, Humboldt State University, Arcata (2009). http://hdl.handle.net/2148/551
[18] Sardoy, N., Consalvi, J.L., Kaiss, A., Fernandez-Pello, A.C., Porterie, B.: Numerical study of ground-level distribution of firebrands generated by line fires. Combust. Flame 154, 478-488 (2008)
[19] Boychuk, D., Braun, W.J., Kulperger, R.J., Krougly, Z.L., Stanford, D.A.: A stochastic forest fire growth model. Environ. Ecol. Stat. 16, 133-151 (2009)
[20] Pagnini, G., Mentrelli, A.: Modelling wildland fire propagation by tracking random fronts. Nat. Hazards Earth Syst. Sci. 14, 2249-2263 (2014)
[21] Kaur, I., Mentrelli, A., Bosseur, F., Filippi, J.-B., Pagnini, G.: Wildland fire propagation modelling: a novel approach reconciling models based on moving interface methods and on reaction-diffusion equations. In: Proceedings of the International Conference Applications of Mathematics 2015 (Prague, CZ; November 18-21, 2015); Eds. J. Brandts et al.; Institute of Mathematics AS CR, Prague, 85-99 (2015) · Zbl 1363.93030
[22] Kaur, I., Mentrelli, A., Bosseur, F., Filippi J.B., Pagnini, G.: Turbulence and fire-spotting effects into wild-land fire simulators. Commun. Nonlinear Sci. Numer. Simul. (2016, in press). doi: 10.1016/j.cnsns.2016.03.003 · Zbl 1461.76367
[23] Montenegro, R., Plaza, A., Ferragut, L., Asensio, M.I.: Application of a nonlinear evolution model to fire propagation. Nonlinear Anal. Theory Methods Appl. 30, 2873-2882 (1997) · Zbl 0934.76096
[24] Serón, F.J., Gutiérrez, D., Magallón, J., Ferragut, L., Asensio, M.I.: The evolution of a wildland forest fire front. Visual Comput. 21, 152-169 (2005)
[25] Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. Tech. Rep. Research Paper INT-115, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah 84401 (1972) · Zbl 1194.92070
[26] Finney, M.: Calculation of fire spread rates across random landscapes. Int. J. Wildland Fire 12, 167-174 (2003)
[27] Balbi, J.H., Morandini, F., Silvani, X., Filippi, J.B., Rinieri, F.: A physical model for wildland fires. Combust. Flame 156, 2217-2230 (2009) · Zbl 1186.74086
[28] Klimontovich, Y.L.: Nonlinear Brownian motion. Phys.-Uspekh. 37, 737-767 (1994)
[29] Pagnini, G., Bonomi, E.: Lagrangian formulation of turbulent premixed combustion. Phys. Rev. Lett. 107, 044503 (2011)
[30] Dafermos, C.M.: Continuous solutions for balance laws. Ric. Mat. 55, 79-91 (2006) · Zbl 1220.35094
[31] De Angelis, M., Renno, P.: Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation. Ric. Mat. 57, 95-109 (2008) · Zbl 1232.45013
[32] Mentrelli, A., Pagnini, G.: Random front propagation in fractional diffusive systems. Commun. Appl. Ind. Math 6(2), e-504 (2014) · Zbl 1338.60110
[33] Mentrelli, A., Pagnini, G.: Front propagation in anomalous diffusive media governed by time-fractional diffusion. J. Comput. Phys. 293, 427-441 (2015) · Zbl 1349.35404
[34] Byram, GM; Davis, KP (ed.), Combustion of forest fuels, 61-89 (1959), New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.