×

Lagrangian stochastic models for turbulent relative dispersion based on particle pair rotation. (English) Zbl 1155.76034

Summary: The physical picture of a fluid particle pair as a couple of material points rotating around their centre of mass is proposed to model turbulent relative dispersion in inertial range. This scheme is used to constrain the non-uniqueness problem associated to the Lagrangian models in the well-mixed class, and the properties of the stochastic process are analysed with respect to some turbulent velocity characteristics. A simple illustrative Markov model is developed for stationary homogeneous isotropic turbulence, and the particle separation statistics is compared with direct numerical simulation data. In spite of the simplicity of the model, a consistent comparison is observed in the inertial range, supporting the formulation proposed.

MSC:

76F55 Statistical turbulence modeling
76F05 Isotropic turbulence; homogeneous turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sabelfeld, Monte Carlo Meth. Applic. 3 pp 53– (1997)
[2] Risken, The Fokker–Planck Equation. Methods of Solution and Applications (1989) · Zbl 0665.60084
[3] DOI: 10.1098/rspa.1926.0043
[4] DOI: 10.1023/A:1014599409514
[5] DOI: 10.1175/1520-0450(1999)0382.0.CO;2
[6] DOI: 10.1016/S0169-5983(98)00040-9
[7] DOI: 10.1023/A:1001183520153
[8] DOI: 10.1063/1.868435
[9] DOI: 10.1016/0360-1285(85)90002-4
[10] DOI: 10.1017/S0022112094002855 · Zbl 0822.76046
[11] DOI: 10.1063/1.870034 · Zbl 1147.76473
[12] DOI: 10.1017/S0022112001005511 · Zbl 0981.76503
[13] DOI: 10.1103/PhysRevLett.77.2222
[14] DOI: 10.1017/S0022112000001658 · Zbl 0959.76504
[15] Obukhov, Izv. Akad. Nauk. SSSR Geogr. Geofiz. 5 pp 453– (1941)
[16] DOI: 10.1103/PhysRevA.46.R6147
[17] DOI: 10.1063/1.857451 · Zbl 0661.76050
[18] DOI: 10.1063/1.865778 · Zbl 0612.76074
[19] DOI: 10.1063/1.869731 · Zbl 1185.76668
[20] Narasimhan, Principles of Continuum Mechanics. (1993) · Zbl 0779.73002
[21] DOI: 10.1007/BF00119421
[22] Monin, Statistical Fluid Mechanics (1975)
[23] Monin, Statistical Fluid Mechanics (1971)
[24] DOI: 10.1007/s10546-005-5293-3
[25] DOI: 10.1103/PhysRevC.69.037301
[26] DOI: 10.1017/S002211200600005X · Zbl 1156.76404
[27] DOI: 10.1103/PhysRevLett.95.164502
[28] Landau, Mechanics. (1960)
[29] Kurbanmuradov, Monte Carlo Meth. Applic. 7 pp 245– (2001)
[30] Kurbanmuradov, Monte Carlo Meth. Applic. 3 pp 199– (1997)
[31] Kurbanmuradov, Monte Carlo Meth. Applic. 1 pp 101– (1995)
[32] Kurbanmuradov, Monte Carlo Meth. Applic. 3 pp 37– (1997)
[33] DOI: 10.1007/BF00705556
[34] DOI: 10.1063/1.1508443 · Zbl 1185.76181
[35] DOI: 10.1016/S0169-5983(00)00017-4
[36] DOI: 10.1017/S0022112095002126 · Zbl 0849.76028
[37] DOI: 10.1063/1.1327294 · Zbl 1184.76220
[38] DOI: 10.1017/S0022112002001696 · Zbl 1062.76028
[39] DOI: 10.1017/S0022112097008069 · Zbl 0908.76038
[40] Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1990) · Zbl 0713.60076
[41] Frisch, Turbulence. The Legacy of A. N. Kolmogorov. (1996)
[42] DOI: 10.1017/S0022112006003375 · Zbl 1105.76032
[43] DOI: 10.1175/1520-0450(2002)0412.0.CO;2
[44] DOI: 10.1007/BF00119097
[45] DOI: 10.1017/S0022112003007584 · Zbl 1116.76361
[46] DOI: 10.1007/BF00709122
[47] DOI: 10.1023/A:1000474206967
[48] Borgas, J. Fluid Mech. 332 pp 141– (1997)
[49] DOI: 10.1017/S0022112090001239 · Zbl 0686.76035
[50] DOI: 10.1017/S0022112003007596 · Zbl 1116.76360
[51] DOI: 10.1017/S0022112087001940 · Zbl 0644.76065
[52] DOI: 10.1007/s001620050081 · Zbl 0924.76037
[53] Tennekes, A First Course in Turbulence. (1972)
[54] DOI: 10.1017/S0022112094003824 · Zbl 0825.76271
[55] Tennekes, Atmospheric Turbulence and Air Pollution Modeling pp 37– (1982)
[56] DOI: 10.1017/S0022112075000468 · Zbl 0302.76033
[57] DOI: 10.1063/1.858877
[58] DOI: 10.1063/1.868656 · Zbl 1027.76611
[59] Sneddon, The Use of Integral Transform. (1972)
[60] She, Phys. Rev. 72 pp 336– (1994)
[61] DOI: 10.1063/1.2946442 · Zbl 1182.76667
[62] DOI: 10.1063/1.2047593 · Zbl 1187.76466
[63] DOI: 10.1063/1.1388539 · Zbl 1184.76481
[64] DOI: 10.1063/1.870449 · Zbl 1184.76480
[65] Sawford, Physica 76 pp 297– (1994)
[66] DOI: 10.1080/14685240500538934
[67] DOI: 10.1146/annurev.fluid.33.1.289
[68] DOI: 10.1023/A:1002114132715
[69] DOI: 10.1016/S0378-4754(98)00124-4
[70] Borgas, J. Fluid Mech. 228 pp 295– (1991)
[71] DOI: 10.1103/PhysRevLett.88.094501
[72] DOI: 10.1063/1.2130742 · Zbl 1188.76013
[73] Berg, Phys. Rev. 74 pp 016304– (2006)
[74] DOI: 10.1002/qj.49707632804
[75] DOI: 10.1063/1.863624
[76] DOI: 10.1209/epl/i1997-00116-1
[77] DOI: 10.1016/S0032-0633(01)00059-9
[78] DOI: 10.1023/A:1002697221093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.