×

An integrated mathematical model of the dynamics of blood glucose and its hormonal control. (English) Zbl 0509.92009


MSC:

92Cxx Physiological, cellular and medical topics
92C50 Medical applications (general)
93B30 System identification
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cobelli, C.; Bergman, R. N., Carbohydrate Metabolism: Quantitative Physiology and Mathematical Modeling (1981), Wiley: Wiley Chichester
[2] Bolie, V. W., Coefficients of normal blood glucose regulation, J. Appl. Physiol., 16, 783-788 (1961)
[3] Ackerman, E.; Gatewood, L. C.; Rosevear, J. W.; Molnar, G. D., Model studies of blood glucose regulation, Bull. Math. Biophys., 17, 21-37 (1965)
[4] Serge, G.; Turco, G. L.; Vercellone, G., Modelling blood glucose and insulin kinetics in normal, diabetic and obese subjects, Diabetes, 22, 94-103 (1973)
[5] Bergman, R. N.; Cobelli, C., Minimal modeling, partition analysis and the estimation of insulin sensitivity, Fed. Proc., 39, 110-115 (1980)
[6] Bergman, R. N.; Ider, Y. Z.; Bowden, G. R.; Cobelli, C., Quantitative estimation of insulin sensitivity, Am. J. Physiol., 236, E667-E677 (1979)
[7] Toffolo, G.; Bergman, R. N.; Finegood, D. T.; Bowden, C. R.; Cobelli, C., Quantitative estimation of beta-cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog, Diabetes, 29, 979-990 (1980)
[8] Bergman, R. N.; Bortolan, G.; Cobelli, C.; Toffolo, G., Identification of a minimal model of glucose disappearance for estimating insulin sensitivity, (Isermann, R., Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, Vol. 2 (1980), Pergamon: Pergamon Oxford), 883-890 · Zbl 0462.92004
[9] Srinivasan, R.; Kadish, A. H.; Sridhar, R., A mathematical model for the control mechanism of free fatty acid-glucose metabolism in normal humans, Comput. Biomed. Res., 3, 146-166 (1970)
[10] Guyton, J. R.; Foster, R. O.; Soeldner, J. S.; Tan, M. H.; Kahn, C. B.; Koncz, L.; Gleason, R. E., A model of glucose-insulin homeostasis in man that incorporates the heterogenous fast pool theory of pancreatic insulin release, Diabetes, 27, 1027-1042 (1978)
[11] Cramp, D. G.; Carson, E. R., Dynamics of blood glucose and its regulating hormones, (Linkens, D. A., Biological Systems, Modeling and Control (1979), Peter Peregrinus: Peter Peregrinus Stevenage), 171-201
[12] Cobelli, C.; Federspil, G.; Pacini, G.; Salvan, A.; Scandellari, C., Modeling and simulation of the blood glucose regulation system, (Dekker, L.; Savastano, G.; Van Steenkiste, G. C., Simulation of Systems (1979), North-Holland: North-Holland Amsterdam), 675-684 · Zbl 0509.92009
[13] Norwich, K. H., Molecular Dynamics in Biosystems (1977), Pergamon: Pergamon New York
[14] Sherwin, R. S.; Kramer, K. J.; Tobin, J. D.; Insel, P. A.; Liljenquist, J. E.; Berman, M.; Anders, R., A model of the kinetics of insulin in man, J. Clin. Invest., 53, 1481-1492 (1974)
[15] Insel, P. A.; Liljenquist, J. E.; Tobin, J. D.; Sherwin, R. S.; Watkins, P.; Anders, R.; Berman, M., Insulin control of glucose metabolism in man, J. Clin. Invest., 55, 1057-1066 (1975)
[16] Charette, W. P., Control systems theory applied to metabolic homeostatic systems and the derivation and identification of mathematical models, (Ph.D. Dissertation (1969), California Institute of Technology: California Institute of Technology Pasadena, Calif.)
[17] Saccà, L.; Hendler, R.; Sherwin, R. S., Hyperglycemia inhibits glucose production in man independent of changes in glucoregulatory hormones, J. Clin. Endocr. & Metab., 47, 1160-1163 (1978)
[18] Liljenquist, J. E.; Mueller, G. L.; Cherrington, A. D.; Perry, J. M.; Rabinowitz, D., Hyperglycemia per se (insulin and glucagon withdrawn) can inhibit hepatic glucose production in man, J. Clin. Endocr. & Metab., 48, 171-175 (1979)
[19] Cherrington, A. D.; Liljenquist, J. E.; Shulman, G. I.; Williams, P. E.; Lacy, W. W., Importance of hypoglycemia induced glucose production during isolated glucagon deficiency, Am. J. Physiol., 236, E263-E271 (1979)
[20] Felig, P.; Wahren, J., Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man, J. Clin. Invest., 50, 1702-1711 (1971)
[21] Felig, P., The liver in glucose homeostasis in normal man and in diabetes, (Diabetes: Its Physiological and Biochemical Basis (1975), MTP Press: MTP Press London), 93-123
[22] Bomboy, J. D.; Lewis, S. B.; Sinclair-Smith, B. C.; Lacy, W. W.; Liljenquist, J. E., Insulin-glucagon interaction in controlling splanchnic glucose production in normal man, J. Clin. Endocr. & Metab., 44, 474-480 (1977)
[23] Cherrington, A. D.; Chiasson, J. L.; Liljenquist, J. E.; Jennings, A. S.; Keller, U.; Lacy, W. W., The role of insulin and glucagon in the regulation of basal glucose production in the postabsorbitive dog, J. Clin. Invest., 58, 1407-1418 (1976)
[24] Rizza, R. A.; Gerich, J. E., Persistent effect of sustained hyperglucagonemia on glucose production in man, J. Clin. Endocr. & Metab., 48, 352-355 (1979)
[25] Felig, P.; Wahren, J.; Hendler, R., Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man, J. Clin. Invest., 58, 761-765 (1976)
[26] Bloomgarden, Z. T.; Liljenquist, J. E.; Cherrington, A. D.; Rabinowitz, D., Persistent stimulatory effect of glucagon on glucose production despite downregulation, J. Clin. Endocr. & Metab., 47, 1152-1184 (1978)
[27] Foster, R. O., The dynamics of blood sugar regulation, (Thesis for M.S. degree (1970), Massachusetts Institute of Technology: Massachusetts Institute of Technology Cambridge)
[28] El-Refai, M.; Bergman, R. N., Simulation study of control of hepatic glycogen synthesis by glucose and insulin, Am. J. Physiol., 231, 1608-1619 (1976)
[29] Bergman, R. N.; El-Refai, M., Dynamic control of hepatic glucose metabolism: studies by experiment and computer simulation, Ann. Biomed. Engng., 3, 411-432 (1975)
[30] Mortimore, G. E., Influence of insulin on the hepatic uptake and release of glucose and amino acids, (Handbook of Physiology, Endocrinology, Vol. I (1972), American Physiological Society: American Physiological Society Washington), 495-506
[31] Saccà, L. R.; Sherwin; Hendler, R.; Felig, P., Influence of continuous physiologic hyperinsulinemia on glucose kinetics and counterregulatory hormones in normal and diabetic humans, J. Clin. Invest., 63, 849-857 (1979)
[32] Gilboe, D. D.; Andrews, R. L.; Dardenne, G., Factors affecting glucose uptake by the isolated dog brain, Am. J. Physiol., 219, 767-773 (1970)
[33] Gilboe, D. D.; Betz, L., Kinetics of glucose transport in the isolated dog brain, Am. J. Physiol., 219, 774-778 (1970)
[34] Cobelli, C.; Pacini, G.; Salvan, A., On a simple model of insulin secretion, Med. & Biol. Engng. & Computing, 18, 457-463 (1980)
[35] Unger, R. H.; Orci, L., Physiology and pathophysiology of glucagon, Physiological Review, 56, 778-826 (1976)
[36] Unger, R. H.; Dobbs, R. E.; Orci, L., Insulin glucagon and somatostatin secretion in the regulation of metabolism, Ann. Rev. Physiol., 40, 307-343 (1978)
[37] Braalen, J. T.; Faloona, G. R.; Unger, R. H., The effect of insulin on the alpha-cell response to hyperglycemia in long-standing alloxan diabetes, J. Clin. Invest., 53, 1017-1021 (1974)
[38] Raskin, P.; Fujita, Y.; Unger, R. H., Effect of insulin-glucose infusions on plasma glucagon levels in fasting diabetics and nondiabetics, J. Clin. Invest., 56, 1132-1138 (1975)
[40] Yalow, R. S.; Black, H.; Villazon, J.; Berson, S. A., Comparison of plasma insulin levels following administration of tolbutamie and glucose, Diabetes, 9, 356-362 (1960)
[41] Federspil, G.; Casara, D.; Varotto, L.; Reffo, G.; Scandellari, C., Comparative study of the effects of intravenous loading with glibornuride and with tolbutamide in healthy and diabetic subjects, Acta Isotopica, 11, 1-15 (1971)
[42] Cerasi, E.; Fick, G.; Rudemo, M., A mathematical model for the glucose induced insulin release in man, Eur. J. Clin. Invest., 4, 267-278 (1974)
[43] Lerner, R. L.; Porte, D., Relationships between intravenous glucose loads, insulin responses and glucose disappearance rate, J. Clin. Endocr., 33, 409-417 (1971)
[44] Onkeda, A.; Watanabe, K.; Horigome, K.; Sakai, T.; Kai, Y.; Oikawa, S. I., Abnormal response of pancreatic glucagon to glycemic changes in diabetes mellitus, J. Clin. & Endocr. Metab., 46, 504-510 (1978)
[45] Garber, A. J.; Cryer, P. E.; Santiago, J. V.; Haymond, M. V.; Pagliara, A. S.; Kipnis, D. M., The role of adrenergic mechanism in the substrate and hormonal response to insulin-induced hypoglycemia in man, J. Clin. Invest., 58, 7-15 (1976)
[48] Bergman, R. N., Integrated control of hepatic glucose metabolism, Fed. Proc., 36, 265-270 (1977)
[49] Cobelli, C.; Pacini, G.; Ruggeri, A.; Del Prato, S.; Duner, E.; Nosadini, R.; Tiengo, A., (IFAC 8th Triennial World Congress, Kyoto, Japan, 24-28 August 1981. IFAC 8th Triennial World Congress, Kyoto, Japan, 24-28 August 1981, Algorithms for closed-loop glucose control (artificial pancreas) in diabetes. A novel noninvasive approach for their evaluation based on mathematical modeling, vol XXI (1981), Peraman: Peraman Oxford), 89-94, Preprints
[50] Radziuk, J.; Norwich, K. H.; Vranic, M., Experimental validation of glucose turnover in nonsteady state, Am. J. Physiol., 234, E84-E93 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.