×

On collision avoiding fixed-time flocking with measurable diameter to a Cucker-Smale-type self-propelled particle model. (English) Zbl 1435.93032

Summary: Dealing with the fixed-time flocking issue is one of the most challenging problems for a Cucker-Smale-type self-propelled particle model. In this article, the fixed-time flocking is established by employing a fixed-time stability theorem when the communication weight function has a positive infimum. Compared with the initial condition-based finite-time stability, an upper bound of the settling time in this paper is merely dependent on the design parameters. Moreover, the size of the final flocking can be estimated by the number of particles and the initial states of the system. In addition, a sufficient condition is formulated to guarantee that all particles do not collide during the process of the flocking. These results can give a reasonable explanation to some flocking phenomena such as bird flocks, fish schools, or human group behaviors. Finally, three numerical examples are granted to display the performance of the obtained results.

MSC:

93A16 Multi-agent systems
92D50 Animal behavior
93C10 Nonlinear systems in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdessameud, A.; Tayebi, A., Formation control of VTOL unmanned aerial vehicles with communication delays, Automatica, 47, 11, 2383-2394 (2011) · Zbl 1228.93006 · doi:10.1016/j.automatica.2011.08.042
[2] Ren, W., Distributed cooperative attitude synchronization and tracking for multiple rigid bodies, IEEE Transactions on Control Systems Technology, 18, 2, 383-392 (2010) · doi:10.1109/tcst.2009.2016428
[3] Wen, G.; Yu, W.; Li, Z.; Yu, X.; Cao, J., Neuro-adaptive consensus tracking of multiagent systems with a high-dimensional leader, IEEE Transactions on Cybernetics, 47, 7, 1730-1742 (2017) · doi:10.1109/tcyb.2016.2556002
[4] Carrillo, J. A.; Fornasier, M.; Rosado, J.; Toscani, G., Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM Journal on Mathematical Analysis, 42, 1, 218-236 (2010) · Zbl 1223.35058 · doi:10.1137/090757290
[5] Liu, Y.; Wu, J., Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, Journal of Mathematical Analysis and Applications, 415, 1, 53-61 (2014) · Zbl 1308.92111 · doi:10.1016/j.jmaa.2014.01.036
[6] Li, X.; Liu, Y.; Wu, J., Flocking and pattern motion in a modified Cucker-Smale model, Bulletin of the Korean Mathematical Society, 53, 5, 1327-1339 (2016) · Zbl 1355.34033 · doi:10.4134/bkms.b150629
[7] Liu, H.; Wang, X.; Liu, Y.; Li, X., On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Communications in Nonlinear Science and Numerical Simulation, 75, 280-301 (2019) · Zbl 1524.82027 · doi:10.1016/j.cnsns.2019.04.006
[8] Carrillo, J. A.; Klar, A.; Martin, S.; Tiwari, S., Self-propelled interacting particle systems with roosting force, Mathematical Models and Methods in Applied Sciences, 20, 1, 1533-1552 (2010) · Zbl 1197.92052 · doi:10.1142/s0218202510004684
[9] Shen, J., Cucker-Smale flocking under hierarchical leadership, SIAM Journal on Applied Mathematics, 68, 3, 694-719 (2007) · Zbl 1311.92196 · doi:10.1137/060673254
[10] Ha, S.-Y.; Lee, K.; Levy, D., Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Communications in Mathematical Sciences, 7, 2, 453-469 (2009) · Zbl 1192.34067 · doi:10.4310/cms.2009.v7.n2.a9
[11] Cucker, F.; Dong, J.-G., A general collision-avoiding flocking framework, IEEE Transactions on Automatic Control, 56, 5, 1124-1129 (2011) · Zbl 1368.93261 · doi:10.1109/tac.2011.2107113
[12] Pignotti, C.; Reche Vallejo, I., Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, Journal of Mathematical Analysis and Applications, 464, 2, 1313-1332 (2018) · Zbl 1391.92059 · doi:10.1016/j.jmaa.2018.04.070
[13] Ahn, S. M.; Choi, H.; Ha, S.-Y.; Lee, H., On collision-avoiding initial configurations to Cucker-Smale type flocking models, Communications in Mathematical Sciences, 10, 2, 625-643 (2012) · Zbl 1321.92084 · doi:10.4310/cms.2012.v10.n2.a10
[14] Choi, Y.-P.; Li, Z., Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Applied Mathematics Letters, 86, 49-56 (2018) · Zbl 1408.34064 · doi:10.1016/j.aml.2018.06.018
[15] Wang, X.; Wang, L.; Wu, J., Impacts of time delay on flocking dynamics of a two-agent flock model, Communications in Nonlinear Science and Numerical Simulation, 70, 80-88 (2019) · Zbl 1464.92293 · doi:10.1016/j.cnsns.2018.10.017
[16] Haimo, V. T., Finite time controllers, SIAM Journal on Control and Optimization, 24, 4, 760-770 (1986) · Zbl 0603.93005 · doi:10.1137/0324047
[17] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/s0363012997321358
[18] Cao, Y.; Ren, W., Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics, Automatica, 50, 10, 2648-2656 (2014) · Zbl 1301.93008 · doi:10.1016/j.automatica.2014.08.028
[19] Ning, B.; Jin, J.; Zheng, J.; Man, Z., Finite-time and fixed-time leader-following consensus for multi-agent systems with discontinuous inherent dynamics, International Journal of Control, 91, 6, 1259-1270 (2018) · Zbl 1390.93065 · doi:10.1080/00207179.2017.1313453
[20] Ji, G.; Hu, C.; Yu, J.; Jiang, H., Finite-time and fixed-time synchronization of discontinuous complex networks: a unified control framework design, Journal of the Franklin Institute, 355, 11, 4665-4685 (2018) · Zbl 1390.93105 · doi:10.1016/j.jfranklin.2018.04.026
[21] Wang, H.; Han, Z.-z.; Xie, Q.-y.; Zhang, W., Finite-time synchronization of uncertain unified chaotic systems based on CLF, Nonlinear Analysis: Real World Applications, 10, 5, 2842-2849 (2009) · Zbl 1183.34072 · doi:10.1016/j.nonrwa.2008.08.010
[22] Gortés, J., Finite-time convergent gradient flows with applications to network consensus, Automatica, 42, 11, 1993-2000 (2006) · Zbl 1261.93058
[23] Zhao, L.; Jia, Y., Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics, Applied Mathematics and Computation, 270, 278-290 (2015) · Zbl 1410.93143 · doi:10.1016/j.amc.2015.08.048
[24] Cai, M.; Xiang, Z., Adaptive neural finite-time control for a class of switched nonlinear systems, Neurocomputing, 155, 177-185 (2015) · doi:10.1016/j.neucom.2014.12.033
[25] Li, S.; Wang, X., Finite-time consensus and collision avoidance control algorithms for multiple AUVs, Automatica, 49, 11, 3359-3367 (2013) · Zbl 1315.93004 · doi:10.1016/j.automatica.2013.08.003
[26] Liu, X.; Chen, M. Z. Q.; Du, H.; Yang, S.; Yang, S., Further results on finite-time consensus of second-order multi-agent systems without velocity measurements, International Journal of Robust and Nonlinear Control, 26, 14, 3170-3185 (2016) · Zbl 1346.93027 · doi:10.1002/rnc.3498
[27] Zuo, Z.; Tie, L., Distributed robust finite-time nonlinear consensus protocols for multi-agent systems, International Journal of Systems Science, 47, 6, 1366-1375 (2016) · Zbl 1333.93027 · doi:10.1080/00207721.2014.925608
[28] Liu, X.; Alsaadi, F.; Yu, W.; Cao, J., Finite-time synchronisation control of complex networks via non-smooth analysis, IET Control Theory & Applications, 9, 8, 1245-1253 (2015) · doi:10.1049/iet-cta.2014.0995
[29] Khanzadeh, A.; Pourgholi, M., Fixed-time leader-follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique, IET Control Theory & Applications, 12, 5, 679-686 (2018) · doi:10.1049/iet-cta.2017.1094
[30] Liu, X.; Cao, J.; Yu, W.; Song, Q., Nonsmooth finite-time synchronization of switched coupled neural networks, IEEE Transactions on Cybernetics, 46, 10, 2360-2371 (2016) · doi:10.1109/tcyb.2015.2477366
[31] Liu, X.; Lam, J.; Yu, W.; Chen, G., Finite-time consensus of multiagent systems with a switching protocol, IEEE Transactions on Neural Networks and Learning Systems, 27, 4, 853-862 (2016) · doi:10.1109/tnnls.2015.2425933
[32] Han, Y.; Zhao, D.; Sun, Y., Finite-time flocking problem of a Cucker-Smale-type self-propelled particle model, Complexity, 21, S1, 354-361 (2006) · doi:10.1002/cplx.21747
[33] Dong, J. G., Finite-time flocking for multi-agent systems under long-range interactions, Proceedings of the 2016 35th Chinese Control Conference (CCC) · doi:10.1109/chicc.2016.7554552
[34] Andrieu, V.; Praly, L.; Astolfi, A., Homogeneous approximation, recursive observer design, and output feedback, SIAM Journal on Control and Optimization, 47, 4, 1814-1850 (2008) · Zbl 1165.93020 · doi:10.1137/060675861
[35] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57, 8, 2106-2110 (2012) · Zbl 1369.93128 · doi:10.1109/tac.2011.2179869
[36] Fu, J.; Wang, J., Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties, Systems & Control Letters, 93, 1-12 (2016) · Zbl 1338.93020 · doi:10.1016/j.sysconle.2016.03.006
[37] Zuo, Z., Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 54, 305-309 (2015) · Zbl 1318.93010 · doi:10.1016/j.automatica.2015.01.021
[38] Hu, C.; Yu, J.; Chen, Z.; Jiang, H.; Huang, T., Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89, 74-83 (2017) · Zbl 1441.93279 · doi:10.1016/j.neunet.2017.02.001
[39] Xiao, Q.; Liu, H.; Wang, X.; Huang, Y., A note on the fixed-time bipartite flocking for nonlinear multi-agent systems, Applied Mathematics Letters, 99 (2020) · Zbl 1423.93036 · doi:10.1016/j.aml.2019.07.004
[40] Defoort, M.; Veluvolu, K.; Djemai, M.; Polyakov, A.; Demesure, G., Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics, IET Control Theory & Applications, 9, 14, 2165-2170 (2015) · doi:10.1049/iet-cta.2014.1301
[41] Zhang, Y.; Yang, Y.; Zhao, Y.; Wen, G., Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances, International Journal of Control, 86, 1, 29-40 (2013) · Zbl 1278.93134 · doi:10.1080/00207179.2012.717722
[42] Filippov, A.; Arscott, F., Differential Equations with Discontinuous Righthand Sides (1988), Berlin, Germany: Springer, Berlin, Germany · Zbl 0664.34001
[43] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1952), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0047.05302
[44] Cucker, F.; Smale, S., Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52, 5, 852-862 (2007) · Zbl 1366.91116 · doi:10.1109/tac.2007.895842
[45] Guan, Z. Z.-H.; Sun, F. F.-L.; Wang, Y. Y.-W.; Li, T., Finite-time consensus for leader-following second-order multi-agent networks, IEEE Transactions on Circuits and Systems, 59, 11, 2646-2654 (2012) · Zbl 1468.93028 · doi:10.1109/tcsi.2012.2190676
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.