Settling-driven large-scale instabilities in double-diffusive convection. (English) Zbl 1460.76853

Summary: When the density of a gravitationally stable fluid depends on a fast diffusing scalar and a slowly diffusing scalar of opposite contribution to the stability, ‘double diffusive’ instabilities may develop and drive convection. When the slow diffuser settles under gravity, as is for instance the case for small sediment particles in water, settling-driven double-diffusive instabilities can additionally occur. Such instabilities are relevant in a variety of naturally occurring settings, such as particle-laden river discharges, or underground inflows in lakes. Inspired by the dynamics of the more traditional thermohaline double-diffusive instabilities, we ask whether large-scale ‘mean-field’ instabilities can develop as a result of sedimentary double-diffusive convection. We first apply the mean-field instability theory of A. Traxler et al. [ibid. 677, 530–553 (2011; Zbl 1241.76229)] to high-Prandtl-number fluids, and find that these are unstable to Radko’s layering instability, yet collectively stable. We then extend the theory of Traxler et al. [loc. cit.] to include settling and study its impact on the development of the collective instability. We find that two distinct regimes exist. At low settling velocities, the double-diffusive turbulence in the fingering regime is relatively unaffected by settling and remains stable to the classical collective instability. It is, however, unstable to a new instability in which large-scale gravity waves are excited by the phase shift between the salinity and particle concentration fields. At higher settling velocities, the double-diffusive turbulence is substantially affected by settling, and becomes unstable to the classic collective instability. Our findings, validated by direct numerical simulations, reveal new opportunities to observe settling-driven layering in laboratory and field experiments.


76T20 Suspensions
76D50 Stratification effects in viscous fluids
76E20 Stability and instability of geophysical and astrophysical flows
76Rxx Diffusion and convection


Zbl 1241.76229
Full Text: DOI Link


[1] Alsinan, A., Meiburg, E. & Garaud, P.2017A settling-driven instability in two-component, stably stratified fluids. J. Fluid Mech.816, 243-267. · Zbl 1383.76074
[2] Baines, P. G. & Gill, A. E.1969On thermohaline convection with linear gradients. J. Fluid Mech.37 (2), 289-306.
[3] Burns, P. & Meiburg, E.2012Sediment-laden fresh water above salt water: linear stability analysis. J. Fluid Mech.691, 279-314. · Zbl 1241.76223
[4] Burns, P. & Meiburg, E.2015Sediment-laden fresh water above salt water: nonlinear simulations. J. Fluid Mech.762, 156-195.
[5] Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A.2007Spectral Methods in Fluid Dynamics. Springer. · Zbl 1121.76001
[6] Carazzo, G. & Jellinek, M. A.2013Particle sedimentation and diffusive convection in volcanic ash-clouds. J. Geophys. Res.118 (4), 1420-1437.
[7] Davarpanah Jazi, S. & Wells, M. G.2016Enhanced sedimentation beneath particle-laden flows in lakes and the ocean due to double-diffusive convection. Geophys. Res. Lett.43 (20), 10883-10890.
[8] Davis, R. H.1996Hydrodynamic diffusion of suspended particles: a symposium. J. Fluid Mech.310, 325-335. · Zbl 0875.76021
[9] Ferry, J. & Balachandar, S.2001A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow27 (7), 1199-1226. · Zbl 1137.76577
[10] Garaud, P.2018Double-diffusive convection at low Prandtl Number. Annu. Rev. Fluid Mech.50 (1), 275-298. · Zbl 1384.76017
[11] Garaud, P., Medrano, M., Brown, J. M., Mankovich, C. & Moore, K.2015Excitation of gravity waves by fingering convection, and the formation of compositional staircases in stellar interiors. Astrophys. J.808 (1), 1-14.
[12] Green, T.1987The importance of double diffusion to the settling of suspended material. Sedimentology34 (2), 319-331.
[13] Holyer, J. Y.1981On the collective instability of salt fingers. J. Fluid Mech.110, 195-207. · Zbl 0484.76057
[14] Houk, D. & Green, T.1973Descent rates of suspension fingers. Deep-Sea Res. Oceanogr. Abstr.20 (8), 757-761.
[15] Krishnamurti, R.2003Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech.483, 287-314. · Zbl 1032.76505
[16] Kunze, E.2003A review of oceanic salt-fingering theory. Prog. Oceanogr.56 (3-4), 399-417.
[17] Linden, P.1973On the structure of salt fingers. Deep-Sea Res. Oceanogr. Abstr.20 (4), 325-340.
[18] Merryfield, W. J.2000Origin of thermohaline staircases. J. Phys. Oceanogr.30 (5), 1046-1068.
[19] Peyret, R.2002Spectral methods for incompressible viscous flow. , vol. 148. Springer. · Zbl 1005.76001
[20] Poisson, A. & Papaud, A.1983Diffusion coefficients of major ions in seawater. Mar. Chem.13 (4), 265-280.
[21] Radko, T.2003A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech.497, 365-380. · Zbl 1065.76086
[22] Radko, T.2013Double-Diffusive Convection. Cambridge University Press.
[23] Radko, T. & Smith, D. P.2012Equilibrium transport in double-diffusive convection. J. Fluid Mech.692, 5-27.
[24] Rani, S. L. & Balachandar, S.2003Evaluation of the equilibrium Eulerian approach for the evolution of particle concentration in isotropic turbulence. Intl J. Multiphase Flow29 (12), 1793-1816. · Zbl 1136.76617
[25] Reali, J. F., Garaud, P., Alsinan, A. & Meiburg, E.2017Layer formation in sedimentary fingering convection. J. Fluid Mech.816, 268-305. · Zbl 1383.76506
[26] Rudnick, D. L.1999Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science283 (5401), 526-529.
[27] Schmitt, R. W.1979The growth rate of super-critical salt fingers. Deep-Sea Res. I26 (1), 23-40.
[28] Schmitt, R. W.1994Double diffusion in oceanography. Annu. Rev. Fluid Mech.26 (1), 255-285.
[29] Schmitt, R. W., Perkins, H., Boyd, J. D. & Stalcup, M. C.1987C-SALT: an investigation of the thermohaline staircase in the western tropical North Atlantic. Deep-Sea Res. I34 (10), 1655-1665.
[30] Shen, C. Y. & Schmitt, R. W.2013 The salt finger wavenumber spectrum. In Double-Diffusive Convection (eds A. Brandt & H. Fernando). doi:10.1029/GM094p0305.
[31] Stellmach, S. & Hansen, U.2008An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers. Geochem. Geophys. Geosyst.9 (5), 1-11.
[32] Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T.2011Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech.677, 554-571. · Zbl 1241.76228
[33] Stern, M. E.1960The “salt-fountain” and thermohaline convection. Tellus12 (2), 172-175.
[34] Stern, M. E.1969Collective instability of salt fingers. J. Fluid Mech.35 (02), 209-218. · Zbl 0164.28802
[35] Stern, M. E., Radko, T. & Simeonov, J.2001Salt fingers in an unbounded thermocline. J. Mar. Res.59 (3), 355-390.
[36] Sánchez, X. & Roget, E.2007Microstructure measurements and heat flux calculations of a triple-diffusive process in a lake within the diffusive layer convection regime. J. Geophys. Res.112 (C2), C02012.
[37] Tait, R. I. & Howe, M. R.1968Some observations of thermo-haline stratification in the deep ocean. Deep-Sea Res. Oceanogr. Abstr.15 (3), 275-280.
[38] Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummell, N.2011Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities. J. Fluid Mech.677, 530-553. · Zbl 1241.76229
[39] Turner, J. S.1967Salt fingers across a density interface. Deep-Sea Res. Oceanogr. Abstr.14 (5), 599-611.
[40] Turner, J. S.1974Double-diffusive phenomena. Annu. Rev. Fluid Mech.6 (1), 37-54.
[41] Walsh, D. & Ruddick, B.1995Double-diffusive interleaving: the influence of nonconstant fiffusivities. J. Phys. Oceanogr.25 (3), 348-358.
[42] Whitfield, D. W. A., Holloway, G. & Holyer, J. Y.1989Spectral transform simulations of finite amplitude double-diffusive instabilities in two dimensions. J. Mar. Res.47 (2), 241-265.
[43] You, Y.2002A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure. Deep-Sea Res. I49 (11), 2075-2093.
[44] Yu, X., Hsu, T. & Balachandar, S.2013Convective instability in sedimentation: linear stability analysis. J. Geophys. Res.118 (1), 256-272.
[45] Yu, X., Hsu, T. & Balachandar, S.2014Convective instability in sedimentation: 3-D numerical study. J. Geophys. Res.119 (11), 8141-8161.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.