×

Enhancement of chemotherapy using oncolytic virotherapy: mathematical and optimal control analysis. (English) Zbl 1416.92091

Summary: Oncolytic virotherapy has been emerging as a promising novel cancer treatment which may be further combined with the existing therapeutic modalities to enhance their effects. To investigate how virotherapy could enhance chemotherapy, we propose an ODE based mathematical model describing the interactions between tumour cells, the immune response, and a treatment combination with chemotherapy and oncolytic viruses. Stability analysis of the model with constant chemotherapy treatment rates shows that without any form of treatment, a tumour would grow to its maximum size. It also demonstrates that chemotherapy alone is capable of clearing tumour cells provided that the drug efficacy is greater than the intrinsic tumour growth rate. Furthermore, virotherapy alone may not be able to clear tumour cells from body tissue but would rather enhance chemotherapy if viruses with high viral potency are used. To assess the combined effect of virotherapy and chemotherapy we use the forward sensitivity index to perform a sensitivity analysis, with respect to chemotherapy key parameters, of the virus basic reproductive number and the tumour endemic equilibrium. The results from this sensitivity analysis indicate the existence of a critical dose of chemotherapy above which no further significant reduction in the tumour population can be observed. Numerical simulations show that a successful combinational therapy of the chemotherapeutic drugs and viruses depends mostly on the virus burst size, infection rate, and the amount of drugs supplied. Optimal control analysis was performed, by means of the Pontryagin’s maximum principle, to further refine predictions of the model with constant treatment rates by accounting for the treatment costs and sides effects. Results from this analysis suggest that the optimal drug and virus combination correspond to half their maximum tolerated doses. This is in agreement with the results from stability and sensitivity analyses.

MSC:

92C50 Medical applications (general)
49K15 Optimality conditions for problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Agarwal; A. S. Bhadauria, Mathematical modeling and analysis of tumor therapy with oncolytic virus, Journal of Applied Mathematics, 2, 131-140 (2011) · doi:10.4236/am.2011.21015
[2] T. Agrawal; M. Saleem; S. Sahu, Optimal control of the dynamics of a tumor growth model with hollings’ type-Ⅱ functional response, Computational and Applied Mathematics, 33, 591-606 (2014) · Zbl 1326.92033 · doi:10.1007/s40314-013-0083-x
[3] M. Alonso; C. Gomez-Manzano; H. Jiang; N. B. Bekele; Y. Piao; W. K. A. Yung; R. Alemany; J. Fueyo, Combination of the oncolytic adenovirus icovir-5 with chemotherapy provides enhanced anti-glioma effect in vivo, Journal of Cancer Gene Therapy, 14, 756-761 (2007) · doi:10.1038/sj.cgt.7701067
[4] Z. Bajzer; T. Carr; K. Josic; S. J. Russell; D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, Journal of Theoretical Biology, 252, 109-122 (2008) · Zbl 1398.92108 · doi:10.1016/j.jtbi.2008.01.016
[5] M. Bartkowski, S. Bridges, P. Came, H. Eggers, P. Fischer, H. Friedmann, M. Green, C. Gurgo, J. Hay, B. D. Korant et al., Chemotherapy of viral infections, vol. 61, Springer Science & Business Media, 2012.
[6] S. Benzekry; C. Lamont; A. Beheshti; A. Tracz; J. M. L. Ebos, Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput Biol, 10, e1003800 (2014) · doi:10.1371/journal.pcbi.1003800
[7] M. Bertau, E. Mosekilde and H. V. Westerhoff, Biosimulation in Drug Development, John Wiley & Sons, 2008.
[8] E. Binz; L. M. Ulrich, Chemovirotherapy: Combining chemotherapeutic treatment with oncolytic virotherapy, Oncolytic Virotherapy, 4, 39-48 (2015)
[9] C. Bollard; H. HeslopS, T cells for viral infections after allogeneic hematopoietic stem cell transplant, Blood, 127, 3331-3340 (2016) · doi:10.1182/blood-2016-01-628982
[10] G. J. Bostol; S. Patil, Carboplatin in clinical stage Ⅰ seminoma: too much and too little at the same time, Journal of Clinical Oncology, 29, 949-952 (2011)
[11] R. W. Carlson; B. I. Sikic, Continuous infusion or bolus injection in cancer chemotherapy, Annals of Internal Medicine, 99, 823-833 (1983) · doi:10.7326/0003-4819-99-6-823
[12] J. Crivelli; J. Földes; P. Kim; J. Wares, A mathematical model for cell cycle-specific cancer virotherapy, Journal of Biological Dynamics, 6, 104-120 (2012) · Zbl 1447.92193 · doi:10.1080/17513758.2011.613486
[13] S. Dasari; P. Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action, European Journal of Pharmacology, 740, 364-378 (2014) · doi:10.1016/j.ejphar.2014.07.025
[14] L. de Pillis; K. R. Fister; W. Gu; C. Collins; M. Daub; D. Gross; J. Moore; B. Preskill, Mathematical model creation for cancer chemo-immunotherapy, Journal of Computational and Mathematical Methods in Medicine, 10, 165-184 (2009) · Zbl 1312.92026 · doi:10.1080/17486700802216301
[15] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, vol. 1, Springer-Verlag, Berlin-New York, 1975. · Zbl 0323.49001
[16] E. Frei III; G. P. Canellos, Dose: a critical factor in cancer chemotherapy, The American Journal of Medicine, 69, 585-594 (1980)
[17] T. Gajewski; H. Schreiber; Y. Fu, Innate and adaptive immune cells in the tumor microenvironment, Nature Immunology, 14, 1014-1022 (2013) · doi:10.1038/ni.2703
[18] K. Garber, China approves world’s first oncolytic virus therapy for cancer treatment, Journal of the National Cancer Institute, 98, 298-300 (2006) · doi:10.1093/jnci/djj111
[19] V. Groh; J. Wu; C. Yee; T. Spies, Tumour-derived soluble MIC ligands impair expression of nkg2d and t-cell activation, Journal of Nature, 419, 734-738 (2002) · doi:10.1038/nature01112
[20] A. Howells; G. Marelli; N. Lemoine; Y. Wang, Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer, Frontiers in Oncology, 7, 195 (2017) · doi:10.3389/fonc.2017.00195
[21] E. Kelly; S. J. Russel, History of oncolytic viruses: Genesis to genetic engineering, Journal of Molecular Therapy, 15, 651-659 (2007) · doi:10.1038/sj.mt.6300108
[22] S. Khajanchi; S. Banerjee, Stability and bifurcation analysis of delay induced tumor immune interaction model, Applied Mathematics and Computation, 248, 652-671 (2014) · Zbl 1338.92048 · doi:10.1016/j.amc.2014.10.009
[23] D. Kirschner; J. Panetta, Modeling immunotherapy of the tumor-immune interaction, Journal of Mathematical Biology, 37, 235-252 (1998) · Zbl 0902.92012 · doi:10.1007/s002850050127
[24] A. Konstorum; A. Vella; A. Adler; R. Laubenbacher, Addressing current challenges in cancer immunotherapy with mathematical and computational modeling, The Royal Society Interface, 146902 (2017) · doi:10.1101/146902
[25] D. Le; J. Miller; V. Ganusov, Mathematical modeling provides kinetic details of the human immune response to vaccination, Frontiers in Cellular and Infection Microbiology, 7, 00177 (2015) · doi:10.3389/fcimb.2014.00177
[26] T. C. Liau; E. Galanis; D. Kirn, Clinical trial results with oncolytic virotherapy: A century of promise, a decade of progress, Journal of Nature Clinical Practice Oncology, 4, 101-117 (2007) · doi:10.1038/ncponc0736
[27] W. Liu; H. I. Freedman, A mathematical model of vascular tumor treatment by chemotherapy, Journal of Mathematical and Computer Modelling, 42, 1089-1112 (2005) · Zbl 1080.92045 · doi:10.1016/j.mcm.2004.09.008
[28] J. Malinzi; A. Eladdadi; P. Sibanda, Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment, Journal of Biological Dynamics, 11, 244-274 (2017) · Zbl 1447.92200 · doi:10.1080/17513758.2017.1328079
[29] J. Malinzi; P. Sibanda; H. Mambili-Mamoboundou, Analysis of virotherapy in solid tumor invasion, Journal of Mathematical Biosciences, 263, 102-110 (2015) · Zbl 1328.35252 · doi:10.1016/j.mbs.2015.01.015
[30] S. Nayar; P. Dasgupta; C. Galustian, Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies-a review, Oncoimmunology, 4, e1002720 (2015) · doi:10.1080/2162402X.2014.1002720
[31] A. Nguyen; L. Ho; Y. Wan, Chemotherapy and oncolytic virotherapy: Advanced tactics in the war against cancer, Frontiers in Oncology, 4, 00145 (2014) · doi:10.3389/fonc.2014.00145
[32] A. S. Novozhilov; F. S. Berezovskaya; E. V. Koonin; G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1, 1-18 (2006)
[33] R. T. D. Oliver; G. M. Mead; G. J. Rustin; J. S. Gordon; J. K. Joffe; N. Aass; R. Coleman; P. P. R. Gabe; S. P. Stenning, Randomized trial of carboplatin versus radiotherapy for stage Ⅰ seminoma: mature results on relapse and contralateral testis cancer rates in MRC TE19/EORTC 30982 study (ISRCTN27163214), Journal of Clinical Oncology, 29, 957-962 (2011) · doi:10.1200/JCO.2009.26.4655
[34] P. K. Ottolino; J. S. Diallo; B. D. Lichty; J. C. Bell; J. A. McCart, Intelligent design: combination therapy with oncolytic viruses, Journal of Molecular Therapy, 18, 251-263 (2010) · doi:10.1038/mt.2009.283
[35] R. Ouifki; G. Witten, A model of HIV-1 infection with HAART therapy and intracellular delays, Discrete and Continous Dynamical Systems Series B, 8, 229-240 (2007) · Zbl 1132.93003 · doi:10.3934/dcdsb.2007.8.229
[36] S. T. R. Pinho; H. I. Freedman; F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis, Journal of Mathematical and Computer Modelling, 36, 773-803 (2002) · Zbl 1021.92014 · doi:10.1016/S0895-7177(02)00227-3
[37] S. T. R. Pinho; D. S. Rodrigues; P. F. A. Mancera, A mathematical model of chemotherapy response to tumour growth, Canadian Applied Math Quarterly, 19, 369-384 (2011) · Zbl 1496.92036
[38] S. Pinho; R. A. F. S. Bacelar; H. Freedman, A mathematical model for the effect of antiangiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlinear Analysis: Real World Applications, 14, 815-828 (2013) · Zbl 1254.92049 · doi:10.1016/j.nonrwa.2012.07.034
[39] K. Relph; H. Pandha; G. Simpson; A. Melcher; K. Harrington, Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances, Oncolytic Virotherapy, 2016, 1-13 (2016)
[40] S. J. Russel; K. W. Pengl; J. C. Bell, Oncolytic virotherapy, Journal of Nature Biotechnology, 30, 658-670 (2012) · doi:10.1038/nbt.2287
[41] B. J. Schroers, Ordinary Differential Equations: A Practical Guide, Cambridge University Press, 2011. · Zbl 1235.34001
[42] J. S. Spratt; J. S. Meyer; J. A. Spratt, Rates of growth of human solid neoplasms: Part i, Journal of Surgical Oncology, 60, 137-146 (1995) · doi:10.1002/jso.2930600216
[43] J. P. Tian, The replicability of oncolytic virus: defining conditions in tumor virotherapy, Journal of Mathematical Biosciences and Engineering, 8, 841-860 (2011) · Zbl 1259.34029 · doi:10.3934/mbe.2011.8.841
[44] S. D. Undevia; A. G. Gomez; M. J. Ratain, Pharmacokinetic variability of anticancer agents, Nature Reviews Cancer, 5, 447-458 (2005) · doi:10.1038/nrc1629
[45] G. Ungerechts; M. E. Frenzke; K. C. Yaiw; T. Miest; P. B. Johnston; R. Cattaneo, Mantle cell lymphoma salvage regimen: Synergy between a reprogrammed oncolytic virus and two chemotherapeutics, Gene Therapy, 17, 1506-1516 (2010) · doi:10.1038/gt.2010.103
[46] J. R. Usher, Some mathematical models for cancer chemotherapy, Journal of Computers & Mathematics with Applications, 28, 73-80 (1994) · Zbl 0808.92018
[47] US Food and Drug Administration and others, FDA approves first-of-its-kind product for the treatment of melanoma. press release. october 27, 2015.
[48] P. van den Driessche; J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[49] Y. Wang; J. P. Tian; J. Wei, Lytic cycle: A defining process in oncolytic virotherapy, Journal of Applied Mathematical Modelling, 37, 5962-5978 (2013) · Zbl 1274.92036 · doi:10.1016/j.apm.2012.12.004
[50] D. Wodarz, Viruses as antitumor weapons defining conditions for tumor remission, Journal of Cancer Research, 61, 3501-3507 (2001)
[51] M. Yoshimori; H. Ookura; Y. Shimada; T. Yoshida; N. Okazaki; M. Yoshino; D. Saito, continuous infusion of anti-cancer drug with balloon infusors, Gan to Kagaku Ryoho. Cancer & Chemotherapy, 15, 3121-3125 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.