zbMATH — the first resource for mathematics

Uniqueness of traces on log-polyhomogeneous pseudodifferential operators. (English) Zbl 1221.47089
Summary: We show how to derive the uniqueness of graded or ordinary traces on some algebras of log-polyhomogeneous pseudodifferential operators from the uniqueness of their restriction to classical pseudodifferential ones.
47G30 Pseudodifferential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
Full Text: DOI
[1] DOI: 10.1090/S0002-9939-07-09168-X · Zbl 1132.58018 · doi:10.1090/S0002-9939-07-09168-X
[2] DOI: 10.1023/A:1006504318696 · Zbl 0920.58047 · doi:10.1023/A:1006504318696
[3] Kontsevich, Functional Analysis on the Eve of the XXI Century, Vol. I pp 173– (1995)
[4] DOI: 10.1006/jfan.1993.1096 · Zbl 0791.35162 · doi:10.1006/jfan.1993.1096
[5] DOI: 10.1142/S021902570200095X · Zbl 1134.58303 · doi:10.1142/S021902570200095X
[6] DOI: 10.1007/s00039-007-0597-8 · Zbl 1125.58009 · doi:10.1007/s00039-007-0597-8
[7] DOI: 10.1007/BFb0078372 · doi:10.1007/BFb0078372
[8] Bourbaki, Algèbre (1962) · Zbl 0455.18010
[9] Shubin, Pseudodifferential Operators and Spectral Theory (1987) · Zbl 0616.47040 · doi:10.1007/978-3-642-96854-9
[10] Seeley, Proceedings of the Symposium in Pure Mathematics, Chicago pp 288– (1966)
[11] DOI: 10.1007/s11854-010-0001-8 · Zbl 1194.58029 · doi:10.1007/s11854-010-0001-8
[12] DOI: 10.1016/j.geomphys.2008.12.003 · Zbl 1175.58007 · doi:10.1016/j.geomphys.2008.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.