×

ALE and space-time variational multiscale isogeometric analysis of wind turbines and turbomachinery. (English) Zbl 1454.65111

Grama, Ananth (ed.) et al., Parallel algorithms in computational science and engineering. Cham: Birkhäuser. Model. Simul. Sci. Eng. Technol., 195-233 (2020).
Summary: Many of the challenges encountered in computational analysis of wind turbines and turbomachinery are being addressed by the Arbitrary Lagrangian-Eulerian (ALE) and Space-Time (ST) Variational Multiscale (VMS) methods and isogeometric discretization. The computational challenges include turbulent rotational flows, complex geometries, moving boundaries and interfaces, such as the rotor motion, and the fluid-structure interaction (FSI), such as the FSI between the wind turbine blade and the air. The core computational methods are the ALE-VMS and ST-VMS methods. These are supplemented with special methods like the Slip Interface (SI) method and ST Isogeometric Analysis with NURBS basis functions in time. We describe the core and special methods and present, as examples of challenging computations performed, computational analysis of horizontal- and vertical-axis wind turbines and flow-driven string dynamics in pumps.
For the entire collection see [Zbl 1446.65003].

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q30 Navier-Stokes equations
70J50 Systems arising from the discretization of structural vibration problems
65D07 Numerical computation using splines
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space-time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377-2406, https://doi.org/10.1142/S0218202515400126. · Zbl 1329.76345 · doi:10.1142/S0218202515400126
[2] Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.
[3] T. Kanai, K. Takizawa, T.E. Tezduyar, K. Komiya, M. Kaneko, K. Hirota, M. Nohmi, T. Tsuneda, M. Kawai, and M. Isono, “Methods for computation of flow-driven string dynamics in a pump and residence time”, Mathematical Models and Methods in Applied Sciences, 29 (2019) 839-870, https://doi.org/10.1142/S021820251941001X. · Zbl 1425.76139 · doi:10.1142/S021820251941001X
[4] A. Korobenko, Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis”, Archives of Computational Methods in Engineering, published online, https://doi.org/10.1007/s11831-018-9292-1, September 2018. · doi:10.1007/s11831-018-9292-1
[5] Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid-structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3-37. · Zbl 1169.74015
[6] K. Takizawa and T.E. Tezduyar, “Multiscale space-time fluid-structure interaction techniques”, Computational Mechanics, 48 (2011) 247-267, https://doi.org/10.1007/s00466-011-0571-z. · Zbl 1398.76128 · doi:10.1007/s00466-011-0571-z
[7] K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space-time computational techniques for the aerodynamics of flapping wings”, Journal of Applied Mechanics, 79 (2012) 010903, https://doi.org/10.1115/1.4005073. · Zbl 1286.76179 · doi:10.1115/1.4005073
[8] K. Takizawa, T.E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori, “Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA)”, Computers & Fluids, 142 (2017) 15-20, https://doi.org/10.1016/j.compfluid.2016.02.021. · Zbl 1390.76689 · doi:10.1016/j.compfluid.2016.02.021
[9] Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method”, Computers & Fluids, 158 (2017) 189-200, https://doi.org/10.1016/j.compfluid.2017.04.017. · Zbl 1390.76345 · doi:10.1016/j.compfluid.2017.04.017
[10] K. Takizawa and T.E. Tezduyar, “Computational methods for parachute fluid-structure interactions”, Archives of Computational Methods in Engineering, 19 (2012) 125-169, https://doi.org/10.1007/s11831-012-9070-4. · Zbl 1354.76113 · doi:10.1007/s11831-012-9070-4
[11] Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12-26. · Zbl 1115.76040
[12] Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143-150. · Zbl 1171.76043
[13] T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1-44, https://doi.org/10.1016/S0065-2156(08)70153-4. · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[14] A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199-259. · Zbl 0497.76041
[15] T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387-401. · Zbl 0866.76044
[16] Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173-201. · Zbl 1169.76352
[17] T.E. Tezduyar and K. Takizawa, “Space-time computations in practical engineering applications: A summary of the 25-year history”, Computational Mechanics, 63 (2019) 747-753, https://doi.org/10.1007/s00466-018-1620-7. · Zbl 1471.76048 · doi:10.1007/s00466-018-1620-7
[18] K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 307-338, https://doi.org/10.1142/S0218202513400058. · Zbl 1261.76013 · doi:10.1142/S0218202513400058
[19] K. Takizawa, T.E. Tezduyar, and R. Kolesar, “FSI modeling of the Orion spacecraft drogue parachutes”, Computational Mechanics, 55 (2015) 1167-1179, https://doi.org/10.1007/s00466-014-1108-z. · Zbl 1325.74169 · doi:10.1007/s00466-014-1108-z
[20] K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 647-657, https://doi.org/10.1007/s00466-011-0614-5. · Zbl 1334.74032 · doi:10.1007/s00466-011-0614-5
[21] K. Takizawa, “Computational engineering analysis with the new-generation space-time methods”, Computational Mechanics, 54 (2014) 193-211, https://doi.org/10.1007/s00466-014-0999-z. · doi:10.1007/s00466-014-0999-z
[22] K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust”, Computational Mechanics, 50 (2012) 743-760, https://doi.org/10.1007/s00466-012-0759-x. · Zbl 1286.76179 · doi:10.1007/s00466-012-0759-x
[23] K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Computational Mechanics, 54 (2014) 213-233, https://doi.org/10.1007/s00466-014-0980-x. · doi:10.1007/s00466-014-0980-x
[24] K. Takizawa, T.E. Tezduyar, and A. Buscher, “Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping”, Computational Mechanics, 55 (2015) 1131-1141, https://doi.org/10.1007/s00466-014-1095-0. · doi:10.1007/s00466-014-1095-0
[25] K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.-C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALE-VMS and space-time methods”, Archives of Computational Methods in Engineering, 21 (2014) 481-508, https://doi.org/10.1007/s11831-014-9113-0. · Zbl 1348.74104 · doi:10.1007/s11831-014-9113-0
[26] K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms”, Computational Mechanics, 51 (2013) 1061-1073, https://doi.org/10.1007/s00466-012-0790-y. · Zbl 1366.76106 · doi:10.1007/s00466-012-0790-y
[27] K. Takizawa, T.E. Tezduyar, H. Uchikawa, T. Terahara, T. Sasaki, and A. Yoshida, “Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization”, Computers & Fluids, 179 (2019) 790-798, https://doi.org/10.1016/j.compfluid.2018.05.025. · Zbl 1411.76184 · doi:10.1016/j.compfluid.2018.05.025
[28] K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the integrated Space-Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods”, Computers & Fluids, 158 (2017) 176-188, https://doi.org/10.1016/j.compfluid.2016.11.012. · Zbl 1390.76944 · doi:10.1016/j.compfluid.2016.11.012
[29] K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2227-2255, https://doi.org/10.1142/S0218202515400072. · Zbl 1325.76139 · doi:10.1142/S0218202515400072
[30] K. Takizawa, T.E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi, “Computational thermo-fluid analysis of a disk brake”, Computational Mechanics, 57 (2016) 965-977, https://doi.org/10.1007/s00466-016-1272-4. · Zbl 1382.74044 · doi:10.1007/s00466-016-1272-4
[31] Y. Otoguro, K. Takizawa, T.E. Tezduyar, K. Nagaoka, and S. Mei, “Turbocharger turbine and exhaust manifold flow computation with the Space-Time Variational Multiscale Method and Isogeometric Analysis”, Computers & Fluids, 179 (2019) 764-776, https://doi.org/10.1016/j.compfluid.2018.05.019. · Zbl 1411.76070 · doi:10.1016/j.compfluid.2018.05.019
[32] T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Tire aerodynamics with actual tire geometry, road contact and tire deformation”, Computational Mechanics, 63 (2019) 1165-1185, https://doi.org/10.1007/s00466-018-1642-1. · Zbl 1469.74041 · doi:10.1007/s00466-018-1642-1
[33] T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Space-Time Isogeometric flow analysis with built-in Reynolds-equation limit”, Mathematical Models and Methods in Applied Sciences, 29 (2019) 871-904, https://doi.org/10.1142/S0218202519410021. · Zbl 1425.76142 · doi:10.1142/S0218202519410021
[34] K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191-200, https://doi.org/10.1016/j.compfluid.2016.05.027. · Zbl 1390.76359 · doi:10.1016/j.compfluid.2016.05.027
[35] K. Takizawa, T.E. Tezduyar, and T. Kanai, “Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity”, Mathematical Models and Methods in Applied Sciences, 27 (2017) 771-806, https://doi.org/10.1142/S0218202517500166. · Zbl 1361.76017 · doi:10.1142/S0218202517500166
[36] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian-Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329-349. · Zbl 0482.76039
[37] V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid-structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321-332, https://doi.org/10.1016/S0045-7825(00)00204-8. · Zbl 0993.76044 · doi:10.1016/S0045-7825(00)00204-8
[38] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207-235, https://doi.org/10.1002/fld.2400. · Zbl 1428.76086 · doi:10.1002/fld.2400
[39] J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs, “Computational free-surface fluid-structure interaction with application to floating offshore wind turbines”, Computers and Fluids, 141 (2016) 155-174, https://doi.org/10.1016/j.compfluid.2016.03.008. · Zbl 1390.76376 · doi:10.1016/j.compfluid.2016.03.008
[40] Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid-structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310-322. · Zbl 1161.74020
[41] M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593-599.
[42] M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211-1225, https://doi.org/10.1007/s00466-015-1166-x. · Zbl 1325.74048 · doi:10.1007/s00466-015-1166-x
[43] D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005-1053. · Zbl 1423.74273
[44] I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719-727.
[45] M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, 316 (2017) 668-693. · Zbl 1439.74117
[46] J. Yan, X. Deng, A. Korobenko, and Y. Bazilevs, “Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines”, Computers and Fluids, 158 (2017) 157-166, https://doi.org/10.1016/j.compfluid.2016.06.016. · Zbl 1390.86027 · doi:10.1016/j.compfluid.2016.06.016
[47] A. Castorrini, A. Corsini, F. Rispoli, K. Takizawa, and T.E. Tezduyar, “A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery”, Mathematical Models and Methods in Applied Sciences, 29 (2019) 967-994, https://doi.org/10.1142/S0218202519410057. · Zbl 1425.76134 · doi:10.1142/S0218202519410057
[48] J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration”, Computers and Fluids, 141 (2016) 201-211, https://doi.org/10.1016/j.compfluid.2015.07.013. · Zbl 1390.76375 · doi:10.1016/j.compfluid.2015.07.013
[49] T.A. Helgedagsrud, I. Akkerman, Y. Bazilevs, K.M. Mathisen, and O.A. Oiseth, “Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics”, ASCE Journal of Engineering Mechanics, 145 (2019) 04019026.
[50] J. Yan, A. Korobenko, A.E. Tejada-Martinez, R. Golshan, and Y. Bazilevs, “A new variational multiscale formulation for stratified incompressible turbulent flows”, Computers & Fluids, 158 (2017) 150-156, https://doi.org/10.1016/j.compfluid.2016.12.004. · Zbl 1390.76107 · doi:10.1016/j.compfluid.2016.12.004
[51] F. Xu, G. Moutsanidis, D. Kamensky, M.-C. Hsu, M. Murugan, A. Ghoshal, and Y. Bazilevs, “Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling”, Computers & Fluids, 158 (2017) 201-220, https://doi.org/10.1016/j.compfluid.2017.02.006. · Zbl 1390.76805 · doi:10.1016/j.compfluid.2017.02.006
[52] T.M. van Opstal, J. Yan, C. Coley, J.A. Evans, T. Kvamsdal, and Y. Bazilevs, “Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 316 (2017) 859-879, https://doi.org/10.1016/j.cma.2016.10.015. · Zbl 1439.76036 · doi:10.1016/j.cma.2016.10.015
[53] Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid-Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771. · Zbl 1286.74001
[54] T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555-575, https://doi.org/10.1002/fld.505. · Zbl 1032.76605 · doi:10.1002/fld.505
[55] T.E. Tezduyar and S. Sathe, “Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques”, International Journal for Numerical Methods in Fluids, 54 (2007) 855-900, https://doi.org/10.1002/fld.1430. · Zbl 1144.74044 · doi:10.1002/fld.1430
[56] M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828-840, https://doi.org/10.1016/j.cma.2009.06.019. · Zbl 1406.76028 · doi:10.1016/j.cma.2009.06.019
[57] K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space-time VMS computation of wind-turbine rotor and tower aerodynamics”, Computational Mechanics, 53 (2014) 1-15, https://doi.org/10.1007/s00466-013-0888-x. · Zbl 1398.76129 · doi:10.1007/s00466-013-0888-x
[58] K. Takizawa, T.E. Tezduyar, and Y. Otoguro, “Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations”, Computational Mechanics, 62 (2018) 1169-1186, https://doi.org/10.1007/s00466-018-1557-x. · Zbl 1462.76128 · doi:10.1007/s00466-018-1557-x
[59] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4135-4195. · Zbl 1151.74419
[60] K. Takizawa and T.E. Tezduyar, “Space-time computation techniques with continuous representation in time (ST-C)”, Computational Mechanics, 53 (2014) 91-99, https://doi.org/10.1007/s00466-013-0895-y. · doi:10.1007/s00466-013-0895-y
[61] T. Kanai, K. Takizawa, T.E. Tezduyar, T. Tanaka, and A. Hartmann, “Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization”, Computational Mechanics, 63 (2019) 301-321, https://doi.org/10.1007/s00466-018-1595-4. · Zbl 1462.76145 · doi:10.1007/s00466-018-1595-4
[62] T. Sasaki, K. Takizawa, and T.E. Tezduyar, “Medical-image-based aorta modeling with zero-stress-state estimation”, Computational Mechanics, 64 (2019) 249-271, https://doi.org/10.1007/s00466-019-01669-4. · Zbl 1469.74085 · doi:10.1007/s00466-019-01669-4
[63] K. Takizawa, T.E. Tezduyar, and T. Sasaki, “Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping”, Computational Mechanics, 63 (2019) 681-700, https://doi.org/10.1007/s00466-018-1616-3. · Zbl 1464.74107 · doi:10.1007/s00466-018-1616-3
[64] Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “A general-purpose NURBS mesh generation method for complex geometries”, in T.E. Tezduyar, editor, Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty - 2018, Modeling and Simulation in Science, Engineering and Technology, 399-434, Springer, 2018, ISBN 978-3-319-96468-3, https://doi.org/10.1007/978-3-319-96469-0_10. · doi:10.1007/978-3-319-96469-0_10
[65] K. Takizawa, T.E. Tezduyar, S. Asada, and T. Kuraishi, “Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC)”, Computers & Fluids, 141 (2016) 124-134, https://doi.org/10.1016/j.compfluid.2016.05.006. · Zbl 1390.76358 · doi:10.1016/j.compfluid.2016.05.006
[66] Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534-3550. · Zbl 1229.74096
[67] M. Esmaily-Moghadam, Y. Bazilevs, T.-Y. Hsia, I.E. Vignon-Clementel, and A.L. Marsden, “A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations”, Computational Mechanics, 48 (2011) 277-291. · Zbl 1398.76102
[68] C.A. Taylor, T.J.R. Hughes, and C.K. Zarins, “Finite element modeling of blood flow in arteries”, Computer Methods in Applied Mechanics and Engineering, 158 (1998) 155-196. · Zbl 0953.76058
[69] T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621-1632, https://doi.org/10.1016/j.cma.2005.05.032. · Zbl 1122.76061 · doi:10.1016/j.cma.2005.05.032
[70] Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery”, International Journal for Numerical Methods in Fluids, 54 (2007) 593-608, https://doi.org/10.1002/fld.1484. · Zbl 1207.76049 · doi:10.1002/fld.1484
[71] S.B. Raknes, X. Deng, Y. Bazilevs, D.J. Benson, K.M. Mathisen, and T. Kvamsdal, “Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells”, Computer Methods in Applied Mechanics and Engineering, 263 (2013) 127-143. · Zbl 1286.74119
[72] K. Takizawa, T. Spielman, and T.E. Tezduyar, “Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters”, Computational Mechanics, 48 (2011) 345-364, https://doi.org/10.1007/s00466-011-0590-9. · Zbl 1398.74095 · doi:10.1007/s00466-011-0590-9
[73] C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs, “Computation of residence time in the simulation of pulsatile ventricular assist devices”, Computational Mechanics, 54 (2014) 911-919, https://doi.org/10.1007/s00466-013-0931-y. · Zbl 1311.74041 · doi:10.1007/s00466-013-0931-y
[74] T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, “Computation of unsteady incompressible flows with the finite element methods: Space-time formulations, iterative strategies and massively parallel implementations”, in New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, (1992) 7-24.
[75] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel finite-element computation of 3D flows”, Computer, 26 (10) (1993) 27-36, https://doi.org/10.1109/2.237441. · Zbl 0875.76267 · doi:10.1109/2.237441
[76] “Life tower”, http://cosmosunfarm.co.jp/lifetower.html.
[77] Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines”, International Journal for Numerical Methods in Engineering, 102 (2015) 766-783, https://doi.org/10.1002/nme.4738. · Zbl 1352.76033 · doi:10.1002/nme.4738
[78] M.-C. Hsu, C. Wang, A.J. Herrema, D. Schillinger, A. Ghoshal, and Y. Bazilevs, “An interactive geometry modeling and parametric design platform for isogeometric analysis”, Computers and Mathematics with Applications, 70 (2015) 1481-1500. · Zbl 1443.65020
[79] B.R. Resor, “Definition of a 5MW/61.5m wind turbine blade reference model”, Technical Report SAND2013-2569, Sandia National Laboratories, Albuquerque, NM, 2013.
[80] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236-253. · Zbl 1428.76087
[81] J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.