×

Two-dimensional characterization of spatially entangled photon pairs. (English) Zbl 1184.78059

Summary: We characterize the entanglement in position and momentum of photon pairs generated in type-II parametric down-conversion. Coincidence maps of the photon positions in the near-field and far-field planes are observed in two transverse dimensions using scanning fiber probes. We estimate the covariance matrix of an effective two-mode system and apply criteria for entanglement based on covariance matrices to certify space-momentum entanglement. The role of higher-order spatial modes for observing spatial entanglement between the two photons is discussed.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
81V80 Quantum optics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRev.47.777 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] Dowling J, J. Mod. Opt. 53 pp 573–864– (2006)
[3] DOI: 10.1109/JSTQE.2007.902724 · doi:10.1109/JSTQE.2007.902724
[4] DOI: 10.1103/PhysRevLett.85.2733 · doi:10.1103/PhysRevLett.85.2733
[5] Teich MC, Ceskoslov. Casopis Fyz. 47 pp 3– (1997)
[6] Lugiato LA, J. Opt. B 4 pp 176– (2002) · doi:10.1088/1464-4266/4/3/372
[7] DOI: 10.1103/PhysRevLett.78.985 · doi:10.1103/PhysRevLett.78.985
[8] DOI: 10.1103/PhysRevA.77.032336 · doi:10.1103/PhysRevA.77.032336
[9] DOI: 10.1023/A:1018890316979 · doi:10.1023/A:1018890316979
[10] Popper KR, Quantum Theory and the Schism in Physics (1983)
[11] DOI: 10.1103/PhysRevLett.92.210403 · doi:10.1103/PhysRevLett.92.210403
[12] DOI: 10.1142/S0219749903000371 · Zbl 1069.81508 · doi:10.1142/S0219749903000371
[13] DOI: 10.1103/PhysRevLett.84.2722 · doi:10.1103/PhysRevLett.84.2722
[14] DOI: 10.1103/PhysRevLett.88.120401 · doi:10.1103/PhysRevLett.88.120401
[15] DOI: 10.1088/1367-2630/8/4/051 · doi:10.1088/1367-2630/8/4/051
[16] Eisert J, Ph.D. Dissertation (2001)
[17] DOI: 10.1103/PhysRevA.65.032314 · doi:10.1103/PhysRevA.65.032314
[18] DOI: 10.1103/PhysRevLett.95.090503 · doi:10.1103/PhysRevLett.95.090503
[19] DOI: 10.1088/0953-4075/27/16/001 · doi:10.1088/0953-4075/27/16/001
[20] DOI: 10.1119/1.17904 · Zbl 1219.81282 · doi:10.1119/1.17904
[21] DOI: 10.1103/PhysRevA.72.032110 · doi:10.1103/PhysRevA.72.032110
[22] DOI: 10.1103/PhysRevA.69.052117 · doi:10.1103/PhysRevA.69.052117
[23] DOI: 10.1088/0953-4075/39/13/S20 · doi:10.1088/0953-4075/39/13/S20
[24] DOI: 10.1103/PhysRevLett.91.107901 · doi:10.1103/PhysRevLett.91.107901
[25] Hodgson N, Optical Resonators (1997)
[26] DOI: 10.1103/PhysRevA.74.012309 · doi:10.1103/PhysRevA.74.012309
[27] DOI: 10.1103/PhysRevLett.75.4337 · doi:10.1103/PhysRevLett.75.4337
[28] DOI: 10.1103/PhysRevLett.59.2044 · doi:10.1103/PhysRevLett.59.2044
[29] DOI: 10.1038/326671a0 · doi:10.1038/326671a0
[30] DOI: 10.1007/BF02747046 · doi:10.1007/BF02747046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.