×

Finitary coalgebraic multisemilattices and multilattices. (English) Zbl 1312.06001

Summary: In this paper we continue the coalgebraization of the structure of multilattice. Specifically, we introduce a coalgebraic characterization of the notion of finitary multi (semi) lattice, a generalization of that of semilattice which arises naturally in several areas of computer science and provides the possibility of handling non-determinism.

MSC:

06A12 Semilattices
06B75 Generalizations of lattices
08A70 Applications of universal algebra in computer science

Software:

CoCLAM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arbab, F.; Baier, C.; de Boer, F. S.; Rutten, J. J.M. M., Models and Temporal Logics for Timed Component Connectors, (SEFM (2004), IEEE Computer Society), 198-207
[2] Benado, M., Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier. I, Čehoslovack. Mat. Ž., 4, 79, 105-129 (1954) · Zbl 0056.04602
[3] Cabrera, I. P.; Cordero, P.; Gutiérrez, G.; Martínez, J.; Ojeda-Aciego, M., A coalgebraic approach to non-determinism: applications to multilattices, Inform. Sci., 180, 4323-4335 (2010) · Zbl 1222.06004
[4] Chellas, B. F., Modal Logic: An Introduction (1980), Cambridge University Press · Zbl 0431.03009
[5] Coecke, B.; Pavlovic, D., Quantum measurements without sums, (The Mathematics of Quantum Computation and Technology (2008), Taylor and Francis), 559-596, (chapter 16) · Zbl 1139.81307
[6] Cordero, P.; Gutiérrez, G.; Martínez, J.; de Guzmán, I. P., A new algebraic tool for automatic theorem provers, Ann. Math. Artif. Intell., 42, 4, 369-398 (2004) · Zbl 1095.68110
[7] Corsini, P.; Leoreanu, V., Applications of Hyperstructure Theory (2003), Kluwer · Zbl 1027.20051
[8] Damásio, C. V.; Medina, J.; Ojeda-Aciego, M., Sorted multi-adjoint logic programs: termination results and applications, Lect. Notes Comput. Sci., 3229, 252-265 (2004) · Zbl 1111.68379
[9] Dennis, L. A.; Bundy, A.; Green, I., Making a productive use of failure to generate witnesses for coinduction from divergent proof attempts, Ann. Math. Artif. Intell., 29, 1-4, 99-138 (2000) · Zbl 1001.68128
[10] Erdo˝s, P. L.; Sziklai, P.; Torney, D. C., A finite word poset, Electron. J. Combin., 8, 2, 10 (2001), (electronic) · Zbl 0994.06002
[11] Goguen, J., L-fuzzy sets, J. Math. Anal. Appl., 18, 145-174 (1967) · Zbl 0145.24404
[12] Grätzer, G., General Lattice Theory (1998), Birkhäuser · Zbl 0385.06015
[13] Hansen, D. J., An axiomatic characterization of multilattices, Discrete Math., 33, 1, 99-101 (1981) · Zbl 0447.06005
[14] Jacobs, B., Objects and classes, co-algebraically, (Object Orientation with Parallelism and Persistence (1996), Kluwer Academic Publishers), 83-103
[15] Jacobs, B., The temporal logic of coalgebras via Galois algebras, Math. Struct. Comput. Sci., 12, 6, 875-903 (2002) · Zbl 1030.03017
[16] Jacobs, B.; Rutten, J. J.M. M., A tutorial on (co)algebras and (co)induction, Bull. Euro. Assoc. Theoret. Comput. Sci., 62, 222-259 (1997) · Zbl 0880.68070
[17] Kato, R.; Watanabe, O., Substring search and repeat search using factor oracles, Inform. Process. Lett., 93, 6, 269-274 (2005) · Zbl 1173.68466
[18] Kurz, A., Specifying coalgebras with modal logic, Theoret. Comput. Sci., 260, 1-2, 119-138 (2001) · Zbl 0974.68034
[19] Martínez, J.; Gutiérrez, G.; de Guzmán, I. P.; Cordero, P., Generalizations of lattices via non-deterministic operators, Discrete Math., 295, 1-3, 107-141 (2005) · Zbl 1085.06005
[20] Medina, J.; Ojeda-Aciego, M.; Ruiz-Calviño, J., Fuzzy logic programming via multilattices, Fuzzy Sets Syst., 158, 6, 674-688 (2007) · Zbl 1111.68016
[21] Medina, J.; Ojeda-Aciego, M.; Vojtáš, P., Multi-adjoint logic programming with continuous semantics, Lect. Notes Artif. Intell., 2173, 351-364 (2001) · Zbl 1007.68023
[22] Medina, J.; Ojeda-Aciego, M.; Vojtáš, P., Similarity-based unification: a multi-adjoint approach, Fuzzy Sets Syst., 146, 1, 43-62 (2004) · Zbl 1073.68026
[23] Middendorf, M.; Manlove, D. F., Combined supersubstring and supersubsequence problems, Theoret. Comput. Sci., 320, 2-3, 247-267 (2004)
[24] Moss, L. S., Coalgebraic logic, Ann. Pure Appl. Logic, 96, 1-3, 277-317 (1999) · Zbl 0969.03026
[25] Palmigiano, A., A coalgebraic view on positive modal logic, Theoret. Comput. Sci., 327, 1-2, 175-195 (2004) · Zbl 1068.03017
[26] Porter, T., Interpreted systems and Kripke models for multiagent systems from a categorical perspective, Theoret. Comput. Sci., 323, 1-3, 235-266 (2004) · Zbl 1078.68146
[27] Reichel, H., An approach to object semantics based on terminal co-algebras, Math. Struct. Comput. Sci., 5, 2, 129-152 (1995) · Zbl 0854.18006
[28] Rounds, W. C.; Zhang, G.-Q., Clausal logic and logic programming in algebraic domains, Inform. Comput., 171, 2, 183-200 (2001) · Zbl 1005.68094
[29] Rudeanu, S.; Vaida, D., Multilattices in informatics: introductory examples, Revista de Logica, 1, 43 (2009)
[30] Rutten, J. J.M. M., Universal coalgebra: a theory of systems, Theoret. Comput. Sci., 249, 1, 3-80 (2000) · Zbl 0951.68038
[31] L. Schröder, D. Pattinson, Description logics and fuzzy probability, in: Proceedings of International Joint Conference on Artificial Intelligence, 2011, pp. 1075-1080.; L. Schröder, D. Pattinson, Description logics and fuzzy probability, in: Proceedings of International Joint Conference on Artificial Intelligence, 2011, pp. 1075-1080.
[32] Solovyov, S. A., On the category Set(JCPos), Fuzzy Sets Syst., 157, 3, 319-470 (2006) · Zbl 1081.18007
[33] Tian, J.; Li, B.-L., Coalgebraic structure of genetic inheritance, Math. Biosci. Eng., 1, 2, 243-266 (2004) · Zbl 1061.17027
[34] Vaida, D., Note on some order properties related to processes semantics I, Fundamenta Informaticae, 73, 1-2, 307-319 (2006) · Zbl 1102.68078
[35] Vojtáš, P., Fuzzy logic programming, Fuzzy Sets Syst., 124, 3, 361-370 (2001) · Zbl 1015.68036
[36] Wegner, P.; Goldin, D., Coinductive models of finite computing agents, Electron. Notes Theor. Comput. Sci., 19, 21 (1999), (electronic) · Zbl 0918.68023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.