zbMATH — the first resource for mathematics

Adjoint varieties and their secant varieties. (English) Zbl 1064.14041
Summary: The purpose of this article is to show how the graded decomposition of complex simple Lie algebras can be applied to studying adjoint varieties \(X\) and their secant varieties Sec\((X)\). Firstly quadratic equations defining adjoint varieties are explicitly given. Secondly it is shown that dim Sec\((X) = 2~\text{dim} X\) for adjoint varieties X in two ways: one is based on Terracini’s lemma, and the other is on some explicit description of Sec\((X)\) in terms of an orbit of the adjoint action. Finally it is shown that the contact loci of the secant variety to its embedded tangent space have dimension two if \(X\) is adjoint.

14J40 \(n\)-folds (\(n>4\))
14M17 Homogeneous spaces and generalizations
14N05 Projective techniques in algebraic geometry
Full Text: DOI
[1] Asano, H., On triple systems, Yokohama city univ. ronso. ser. natural sci., 27, 7-31, (1975), (in Japanese)
[2] Asano, H., Symplectic triple systems and simple Lie algebras, RIMS kokyuroku. Kyoto univ., 308, 41-54, (1977), (in Japanese)
[3] Boothby, W., Homogeneous complex contact manifolds, (), 144-154
[4] Boothby, W., A note on homogeneous complex contact manifolds, (), 276-280 · Zbl 0103.38703
[5] Bourbaki, N., Éléments de mathématique, groupes et algèbres de Lie, (1968), Hermann Paris, Chapitres 4, 5 et 6 · Zbl 0186.33001
[6] Dynkin, E.B.; Dynkin, E.B., Semisimple subalgebras of semisimple Lie algebras, Mat. sbornik N.S., AMS translations series 2, 6, 72, 111-244, (1957), (English translations) · Zbl 0077.03404
[7] Freudenthal, H. — Beziehungen der E7 und E8 zur Oktavenebene. VIII; IX. Nederl. Akad. Wetensch. Proc. Ser. A 62
[8] Freudenthal, H. — Beziehungen der E7 und E8 zur Oktavenebene, X. Nederl. Akad. Wetensch. Proc. Ser. A 66
[9] Fujita, T.; Roberts, J., Varieties with small secant varieties: the extremal case, Amer. J. math., 103, 953-976, (1981) · Zbl 0475.14046
[10] Fujita, T., Projective threefolds with small secant varieties, Sci. papers college gen. ed. univ. Tokyo, 32, 33-46, (1982) · Zbl 0492.14027
[11] Fulton, W.; Harris, J., Representation theory: A first course, () · Zbl 0744.22001
[12] Harris, J., Algebraic geometry: A first course, () · Zbl 0779.14001
[13] Humphreys, J.E., Introduction to Lie algebras and representation theory, () · Zbl 0254.17004
[14] Humphreys, J.E., Linear algebraic groups, () · Zbl 0507.20017
[15] Kaji, H. — Homogeneous projective varieties with degenerate secants. (To appear in Trans. Amer. Math. Soc.). · Zbl 0905.14031
[16] Kaji, H. and O. Yasukura — Adjoint varieties and their secant varieties. II. (In preparation). · Zbl 1064.14041
[17] Lazarsfeld, R.; van de Ven, A., Topics in the geometry of projective space, () · Zbl 0564.14007
[18] Lichtenstein, W., A system of quadrics describing the orbit of the highest weight vector, (), 605-608 · Zbl 0501.22017
[19] Ohno, M., On odd dimensional projective manifolds with smallest secant varieties, Math. Z., 226, 483-498, (1977) · Zbl 0887.14029
[20] Ohno, M. — On degenerate secant varieties whose Gauss maps have the largest images, (To appear in Pacific J. Math.). · Zbl 0939.14029
[21] Wolf, J.A., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. math. and mechanics, 14, 1033-1047, (1965) · Zbl 0141.38202
[22] Yamaguti, K., On metasymplectic geometry, RIMS kokyuroku, Kyoto univ., 308, 55-92, (1977), (in Japanese)
[23] Yamaguti, K.; Asano, H., On Freudenthal’s construction of exceptional Lie algebras, (), 253-258 · Zbl 0298.17010
[24] Yasukura, O., On subalgebras of type A1 in simple Lie algebras, Algebras, groups and geometries, 5, 359-368, (1988)
[25] Zak, F.L., Tangents and secants of algebraic varieties, () · Zbl 0795.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.