×

zbMATH — the first resource for mathematics

Nef vector bundles on a projective space with first Chern class three. (English) Zbl 07217853
Given a nef vector bundle \(\mathcal{E}\) on a projective space \(\mathbb{P}^n\) it is well-known that \(c_1(\mathcal{E})\geq 0\). Nef vector bundles \(\mathcal{E}\) with \(c_1(\mathcal{E})\leq 2\) were classified by [T. Peternell et al., Lect. Notes Math. 1507, 145–156 (1992; Zbl 0781.14006)] analyzing the contraction morphisms of extremal rays. In particular, for \(n\geq 2\), \(\mathbb{P}(\mathcal{E})\) is a Fano variety. A different proof of the classification was obtained by M. Ohno [“Nef vector bundles on a projective space or a hyperquadric with the first Chern class small”, Preprint, arXiv:1409.4191] using the twists \(\mathcal{E}(d)\).
The paper under review deals with the next case, namely nef vector bundles \(\mathcal{E}\) on \(\mathbb{P}^n\) (over an algebraically closed field of characteristic zero) with \(c_1(\mathcal{E})=3\) are completely classified. In particular, one has \(0\leq c_2(\mathcal{E})\leq c_1(\mathcal{E})^2=9\). When \(c_2(\mathcal{E})<8\), the author proves that the nef vector bundles \(\mathcal{E}\) are globally generated. For \(c_2=8\) and \(9\), there exist examples of non-globally generated nef vector bundles on the projective plane.
MSC:
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14F06 Sheaves in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anghel, C.; Manolache, N., Globally generated vector bundles on \(\mathbb{P}^n\) with \(c_1=3\), Math. Nachr., 286, 14-15, 1407-1423 (2013) · Zbl 1279.14053
[2] Bănică, C., Smooth reflexive sheaves, Rev. Roum. Math. Pures Appl., 36, 9-10, 571-593 (1991) · Zbl 0773.14005
[3] Beilinson, AA, Coherent sheaves on \({P}^n\) and problems in linear algebra, Funktsional. Anal. i Prilozhen., 12, 3, 214-216 (1978) · Zbl 0424.14003
[4] Bondal, AI, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat., 53, 1, 25-44 (1989)
[5] Chiodera, L.; Ellia, P., Rank two globally generated vector bundles with \(c_1\le 5\), Rend. Istit. Mat. Univ. Trieste, 44, 413-422 (2012) · Zbl 1271.14020
[6] Fulton, W., Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (1998), Berlin: Springer, Berlin · Zbl 0885.14002
[7] Kawamata, Y., A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann., 261, 1, 43-46 (1982) · Zbl 0476.14007
[8] Kumar, NM; Peterson, C.; Rao, AP; Cutkosky, SD; Eddidin, D.; Qin, Z.; Zhang, Q., Standard vector bundle deformations on \(\mathbb{P}^n\), Vector Bundles and Representation Theory (Columbia, MO, 2002), no. 322 in Contemporary Mathematics, 151-163 (2003), Providence: American Mathematical Society, Providence
[9] Langer, A., Fano 4-folds with scroll structure, Nagoya Math. J., 150, 135-176 (1998) · Zbl 0960.14019
[10] Lazarsfeld, R., Positivity in Algebraic Geometry. II. Positivity for Vector Bundles, and Multiplier Ideals., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (2004), Berlin: Springer, Berlin
[11] Ohno, M.: Nef vector bundles on a projective space or a hyperquadric with the first Chern class small. (2014) arXiv:1409.4191
[12] Ohno, M., Nef vector bundles on a projective space with first Chern class 3 and second Chern class 8, Matematiche (Catania), 72, 2, 69-81 (2017) · Zbl 1402.14025
[13] Ohno, M.; Terakawa, H., A spectral sequence and nef vector bundles of the first Chern class two on hyperquadrics, Ann. Univ. Ferrara Sez. VII Sci. Mat., 60, 2, 397-406 (2014) · Zbl 1408.14133
[14] Okonek, C.; Schneider, M.; Spindler, H., Vector Bundles on Complex Projective Spaces, Progress in Mathematics (1980), Boston: Birkhäuser, Boston · Zbl 0438.32016
[15] Peternell, T.; Szurek, M.; Wiśniewski, JA; Hulek, K.; Peternell, T.; Schneider, M.; Schreyer, FO, Numerically effective vector bundles with small Chern classes, Complex Algebraic Varieties, Proceedings, Bayreuth, 1990, no. 1507 in Lecture Notes in Mathematics, 145-156 (1992), Berlin: Springer, Berlin · Zbl 0781.14006
[16] Sato, E., Uniform vector bundles on a projective space, J. Math. Soc. Jpn., 28, 1, 123-132 (1976) · Zbl 0315.14003
[17] Sierra, JC; Ugaglia, L., Globally generated vector bundles on projective spaces II, J. Pure Appl. Algebra, 218, 1, 174-180 (2014) · Zbl 06244901
[18] Szurek, M.; Wiśniewski, JA, On Fano manifolds, which are \(\mathbb{P}^k\)-bundles over \(\mathbb{P}^2\), Nagoya Math. J., 120, 89-101 (1990) · Zbl 0728.14037
[19] Tango, H., An example of indecomposable vector bundle of rank \(n-1\) on \(\mathbf{P}^n\), J. Math. Kyoto Univ., 16, 1, 137-141 (1976) · Zbl 0339.14008
[20] Trautmann, G., Darstellung von Vektorraumbündeln über \(\mathbf{C}\setminus \{0\} \), Arch. Math. (Basel), 24, 303-313 (1973) · Zbl 0284.32018
[21] Vetter, U., Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Moduln, Arch. Math. (Basel), 24, 158-161 (1973) · Zbl 0257.13009
[22] Viehweg, E., Vanishing theorems, J. Reine Angew. Math., 335, 1-8 (1982) · Zbl 0485.32019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.