zbMATH — the first resource for mathematics

On the asymptotic criterion for the zero-free regions of certain \(L\)-functions. (English) Zbl 1424.11128
Summary: We investigate relations between zero-free regions of certain \(L\)-functions and the asymptotic behavior of corresponding generalized Li coefficients. Precisely, we prove that violation of the \(\tau/2\)-generalized Riemann hypothesis implies oscillations of corresponding \(\tau\)-Li coefficients with exponentially growing amplitudes. Results are obtained for class \(\mathcal{S}^{\natural \flat}(\sigma_0, \sigma_1)\) that contains the Selberg class, the class of all automorphic \(L\)-functions, the Rankin-Selberg \(L\)-functions, and products of suitable shifts of the mentioned functions.
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11M41 Other Dirichlet series and zeta functions
Full Text: DOI
[1] Bucur A, Ernvall-Hyt¨onen AM, Odˇzak A, Roditty-Gershon E, Smajlovi´c L. On τ -Li coefficients for Rankin-Selberg L -functions. In: Bertin MJ, Bucur A, Feigon F, Schneps L, editors. Women in Numbers Europe - WINE 2013; 14–18 October 2013; Luminy, France. Cham, Switzerland: Springer International Publishing, 2015, pp. 167-190.
[2] Droll AD. Variations of Li’s criterion for an extension of the Selberg class. PhD, Queen’s University, Kingston, Canada, 2012.
[3] Ernvall-Hyt¨onen AM, Odˇzak A, Smajlovi´c L, Suˇsi´c M. On the modified Li criterion for a certain class of L functions. J Number Theory 2015; 156: 340-367.
[4] Freitas P. A Li-type criterion for zero-free half-planes of Riemann’s zeta function. J London Math Soc 2006; 73: 399-414. · Zbl 1102.11046
[5] Karatsuba AA, Korolev MA. The argument of the Riemann zeta function. Russ Math Surv 2005; 60: 433-488. · Zbl 1116.11070
[6] Lagarias JC. Li’s coefficients for automorphic L -functions. Ann Inst Fourier 2007; 57: 1689-1740. · Zbl 1216.11078
[7] Li XJ. The positivity of a sequence of numbers and the Riemann hypothesis. J Number Theory 1997; 65: 325-333. · Zbl 0884.11036
[8] Li XJ. Explicit formulas for Dirichlet and Hecke Lfunctions. Ill J Math 2004; 48: 491-503.
[9] Odˇzak A, Smajlovi´c L. On Li’s coefficients for the Rankin-Selberg L -functions. Ramanujan J 2010; 21: 303-334.
[10] Odˇzak A, Smajlovi´c L. On asymptotic behavior of generalized Li coefficients in the Selberg class. J Number Theory 2011; 131: 519-535.
[11] Smajlovi´c L. On Li’s criterion for the Riemann hypothesis for the Selberg class. J Number Theory 2010; 130: 828-851. · Zbl 1188.11046
[12] Voros A. Sharpenings of Li’s criterion for the Riemann hypothesis. Math Phys Anal Geom. 2006; 9: 53-63. · Zbl 1181.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.