zbMATH — the first resource for mathematics

Quantum nonintegrability and the classical limit for usp(4) systems. (English) Zbl 1081.81047
Summary: We investigate the transition from integrability to chaos in a system built of usp(4) elements, both in the quantum case and in its classical limit, obtained using coherent states. This algebraic Hamiltonian consists in an integrable term plus a nonlinear perturbation, and we see that the level spacing distribution for the quantum system is well approximated by the Berry-Robnik-Brody distribution, and accordingly the classical limit displays mixed dynamics.
81Q50 Quantum chaos
81R12 Groups and algebras in quantum theory and relations with integrable systems
70H05 Hamilton’s equations
Full Text: DOI
[1] Haake, F., Quantum signatures of chaos, (2001), Springer Berlin · Zbl 0985.81038
[2] Stöckmann, H.-J., Quantum chaos: an introduction, (1999), Cambridge University Press Cambridge · Zbl 0940.81019
[3] Berry, M.V.; Robnik, M., J. phys. A, 17, 2413, (1984)
[4] Prosen, T.; Robnik, M., J. phys. A, 27, 8059, (1994)
[5] Arima, A.; Iachello, F.; Arima, A.; Iachello, F.; Arima, A.; Iachello, F.; Iachello, F.; Arima, A., The interacting boson model, Ann. phys., Ann. phys., Ann. phys., 123, 468, (1987), Cambridge University Press Cambridge
[6] Iachello, F.; Iachello, F.; Levine, R.D., Algebraic theory of molecules, Chem. phys. lett., 78, 581, (1995), Oxford University Press New York
[7] Iachello, F.; Levine, R.D.; van Roosmalen, O.S.; Iachello, F.; Levine, R.D.; Dieperink, E.L.; Alhassid, Y.; Gürsey, F.; Iachello, F.; Hornos, J.; Iachello, F.; Frank, A.; Lemus, R.; Iachello, F.; Bernardes, E.S.; Hornos, Y.M.; Hornos, J.E.; Frank, A.; Iachello, F.; Oss, S.; Iachello, F.; Perez-Bernal, F.; Vaccaro, P.H., J. chem. phys., J. chem. phys., Ann. phys., J. chem. phys., J. chem. phys., Chem. phys. lett., Ann. phys., Eur. phys. J. D, Chem. phys. lett., 375, 309, (2003)
[8] Iachello, F.; Truini, P.; Guidry, M.; Birman, J.L.; Weger, M.; Wu, L.A., Ann. phys., Phys. rev. B, Phys. rev. B, Phys. rev. B, 67, 014515, (2003)
[9] Hornos, J.E.M.; Hornos, Y.M.M.; Hornos, J.E.M.; Hornos, Y.M.M.; Forger, M., Phys. rev. lett., Int. J. mod. phys. B, 13, 2795, (1999)
[10] ()
[11] Perelomov, A., Generalized coherent states and their applications, (1986), Springer Berlin · Zbl 0605.22013
[12] Zhang, W.M.; Feng, D.H.; Zhang, W.M.; Feng, D.H.; Gilmore, R., Phys. rep., Rev. mod. phys., 62, 867, (1990)
[13] Bartlett, S.D.; Rowe, D.J.; Repka, J., J. phys. A, 35, 5599, (2002), and references therein · Zbl 1065.81072
[14] Novaes, M.; Hornos, J.E.M., J. phys. A, 37, 3159, (2004)
[15] Wünsche, A.; Wünsche, A., J. opt. B, J. opt. B, 4, 1, (2002)
[16] Bernardes, E.S., J. phys. A, 32, 6295, (1999)
[17] Gnutzmann, S.; Kuś, M., J. phys. A, 31, 9871, (1998)
[18] Gnutzmann, S.; Haake, F.; Kuś, M., J. phys. A, 33, 143, (2000)
[19] Lisiecki, W., Rep. math. phys., 35, 327, (1995)
[20] Marsden, J.E.; Ratiu, T.S., Introduction to mechanics and symmetry, (1994), Springer Berlin
[21] Arnold, V.I., Mathematical methods of classical mechanics, (1989), Springer Berlin
[22] Bohigas, O.; Giannoni, M.J.; Schmit, C., Phys. rev. lett., 52, 1, (1984)
[23] Brody, T.A., Lett. nuovo cimento, 7, 482, (1973)
[24] Wintgen, D.; Friedrich, H.; Hönig, A.; Wintgen, D.; Ganesan, K.; Lakshmanan, M., Phys. rev. A, Phys. rev. A, J. phys. B, 27, 2809, (1994)
[25] Robnik, M.; Prosen, T., J. phys. A, 30, 8787, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.