×

The HPM applied to MHD nanofluid flow over a horizontal stretching plate. (English) Zbl 1334.76110

Summary: The nonlinear two-dimensional forced-convection boundary-layer magneto hydrodynamic (MHD) incompressible flow of nanofluid over a horizontal stretching flat plate with variable magnetic field including the viscous dissipation effect is solved using the homotopy perturbation method (HPM). In the present work, our results of the HPM are compared with the results of simulation using the finite difference method, Keller’s box-scheme. The comparisons of the results show that the HPM has the capability of solving the nonlinear boundary layer MHD flow of nanofluid with sufficient accuracy.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. H. He, Non-perturbative methods for strongly nonlinear problems [Ph.D. thesis], de-Verlag im Internet GmbH, Berlin, Germany, 2006.
[2] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[3] J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[4] J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 26, no. 3, pp. 695-700, 2005. · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[5] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57-68, 1998. · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[6] J. H. He, “Approximate solution of nonlinear differential equations with convolution product nonlinearities,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 69-73, 1998. · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[7] J. H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 1342.34005
[8] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[9] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[10] J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108-113, 2006. · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[11] J.-H. He, “Periodic solutions and bifurcations of delay-differential equations,” Physics Letters A, vol. 347, no. 4-6, pp. 228-230, 2005. · Zbl 1195.34116 · doi:10.1016/j.physleta.2005.08.014
[12] J. H. He, “Limit cycle and bifurcation of nonlinear problems,” Chaos, Solitons & Fractals, vol. 26, no. 3, pp. 827-833, 2005. · Zbl 1093.34520 · doi:10.1016/j.chaos.2005.03.007
[13] J. H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005. · Zbl 1401.65085
[14] P. D. Ariel, T. Hayat, and S. Asghar, “Homotopy perturbation method and axisymmetric flow over a stretching sheet,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 399-406, 2006. · Zbl 06942218
[15] D. D. Ganji and S. H. Hashemi Kachapi, “Analysis of nonlinear equations in fluids,” Progress in Nonlinear Science, vol. 2, pp. 1-293, 2011.
[16] D. D. Ganji and S. H. Hashemi Kachapi, “Analytical and Numerical Methods in Engineering and Applied Sciences,” Progress in Nonlinear Science, vol. 3, pp. 1-579, 2011.
[17] J. Singh, P. K. Gupta, K. N. Rai, and CIMS-DST, “Homotopy perturbation method to space-time fractional solidification in a finite slab,” Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, vol. 35, no. 4, pp. 1937-1945, 2011. · Zbl 1217.80153 · doi:10.1016/j.apm.2010.11.005
[18] S. O. Ajadi and M. Zuilino, “Approximate analytical solutions of reaction-diffusion equations with exponential source term: homotopy perturbation method (HPM),” Applied Mathematics Letters, vol. 24, no. 10, pp. 1634-1639, 2011. · Zbl 1221.34040 · doi:10.1016/j.aml.2011.04.003
[19] D. Slota, “The application of the homotopy perturbation method to one-phase inverse Stefan problem,” International Communications in Heat and Mass Transfer, vol. 37, no. 6, pp. 587-592, 2010. · doi:10.1016/j.icheatmasstransfer.2010.03.009
[20] H. B. Keller, “A new difference scheme for parabolic problems,” in Numerical Solution of Partial Differential Equations, II, pp. 327-350, Academic Press, New York, NY, USA, 1971. · Zbl 0243.65060
[21] S. M. Aminossadati and B. Ghasemi, “Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure,” European Journal of Mechanics, B, vol. 28, no. 5, pp. 630-640, 2009. · Zbl 1176.76127 · doi:10.1016/j.euromechflu.2009.05.006
[22] T. C. Chiam, “Hydromagnetic flow over a surface stretching with a power-law velocity,” International Journal of Engineering Science, vol. 33, no. 3, pp. 429-435, 1995. · Zbl 0899.76375 · doi:10.1016/0020-7225(94)00066-S
[23] S. P. A. Devi and M. Thiyagarajan, “Steady nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature,” Heat and Mass Transfer, vol. 42, no. 8, pp. 671-677, 2006. · doi:10.1007/s00231-005-0640-y
[24] T. Cebeci and P. Bradshaw, Momentum Transfer in Boundary Layers, Hemisphere Publishing Corporation, New York, NY, USA, 1997. · Zbl 0424.76023
[25] T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer Study Editions, Springer-Verlag, New York, NY, USA, 1988. · Zbl 0702.76003
[26] M. Z. Salleh, S. Ahmad, and R. Nazar, “Numerical solutions of the forced convection boundary layer flow at a forward stagnation point,” European Journal of Scientific Research, vol. 19, no. 4, pp. 644-653, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.