×

Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems. (English) Zbl 07515448

Summary: This paper deals with the development of efficient incomplete multidimensional Riemann solvers for hyperbolic systems. Departing from a four-waves model for the speeds of propagation arising at each vertex of the computational structured mesh, we present a general strategy for constructing genuinely multidimensional Riemann solvers, that can be applied for solving systems including source and coupling terms.
In particular, a simple version of a well-balanced 2d HLL scheme is presented, which is later taken as a basis to build a general class of incomplete Riemann solvers, the so-called Approximate Viscosity Matrix (AVM) schemes. The great advantage of the AVM strategy is the possibility to control the amount of numerical diffusion considered for each hyperbolic system at an affordable computational cost.
The presented numerical schemes are shown to be linearly \(L^\infty\)-stable for a CFL number up to unity. Our schemes can be used as building blocks for constructing high-order schemes. In this work, a second-order scheme is constructed by using a predictor-corrector MUSCL-Hancock procedure.
To test the performances of the proposed schemes, a number of challenging numerical experiments in one-layer and two-layer shallow water systems have been run. The presence of the bottom topography and the coupling terms represent an additional difficulty, that has been solved by reformulating the problem within the path-conservative framework. Finally, the 2d schemes have been shown to be more efficient than their projected 1d\(\times\)1d counterparts.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Software:

HLLE; RIEMANN; PVM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Audusse, E.; Bouchut, F.; Bristeau, M.-O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 2050-2065 (2004) · Zbl 1133.65308
[2] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993 (2010) · Zbl 1303.76140
[3] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503 (2012) · Zbl 1284.76261
[4] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208 (2014) · Zbl 1349.76426
[5] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure - Part I - Application to hyperbolic conservation laws on structured meshes, J. Comput. Phys., 277, 163-200 (2014) · Zbl 1349.76303
[6] Balsara, D. S.; Dumbser, M., Multidimensional Riemann problem with self-similar internal structure - Part II - Application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys., 287, 269-292 (2015) · Zbl 1351.76091
[7] Balsara, D. S.; Nkonga, B., Formulating multidimensional Riemann solvers in similarity variables - Part III - A multidimensional analogue of the HLLI Riemann solver for conservation hyperbolic systems, J. Comput. Phys., 346, 25-48 (2017) · Zbl 1378.76056
[8] Batten, P.; Clarke, W.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[9] Bermúdez, A.; Vázquez, M. E., Upwind methods for hyperbolic conservative laws with source terms, Comput. Fluids, 23, 1049-1071 (1994) · Zbl 0816.76052
[10] Berthon, C.; Chalons, C., A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow water equations, Math. Comput., 85, 1281-1307 (2016) · Zbl 1382.76180
[11] Brio, M.; Zakharian, A. R.; Webb, G. M., Two dimensional Riemann solver for Euler equations of gas dynamics, J. Comput. Phys., 167, 177-195 (2001) · Zbl 1043.76042
[12] Castro, M. J.; Fernández-Nieto, E. D., A class of computationally fast first order finite volume solvers: PVM methods, SIAM J. Sci. Comput., 34, A2173-A2196 (2012) · Zbl 1253.65167
[13] Castro, M. J.; Fernández-Nieto, E. D.; Ferreiro, A. M.; García-Rodríguez, J. A.; Parés, C., High order extension of Roe schemes for two dimensional nonconservative hyperbolic systems, J. Sci. Comput., 39, 67-114 (2009) · Zbl 1203.65131
[14] Castro-Díaz, M. J.; Fernández-Nieto, E. D.; González-Vida, J. M.; Parés-Madroñal, C., Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system, J. Sci. Comput., 48, 16-40 (2011) · Zbl 1416.76140
[15] Castro, M. J.; Fernández-Nieto, E. D.; Morales de Luna, T.; Narbona-Reina, G.; Parés, C., A HLLC scheme for nonconservative hyperbolic systems. Application to turbidity currents with sediment transport, ESAIM: Math. Model. Numer. Anal., 47, 1-32 (2013) · Zbl 1268.76037
[16] Castro, M.; Gallardo, J. M.; López-García, J. A.; Parés, C., Well-balanced high order extensions of Godunov’s method for semilinear balance laws, SIAM J. Numer. Anal., 46, 1012-1039 (2009) · Zbl 1159.74045
[17] Castro, M. J.; Gallardo, J. M.; Marquina, A., A class of incomplete Riemann solvers based on uniform rational approximations to the absolute value function, J. Sci. Comput., 60, 363-389 (2014) · Zbl 1299.76181
[18] Castro, M. J.; Gallardo, J. M.; Marquina, A., Approximate Osher-Solomon schemes for hyperbolic systems, Appl. Math. Comput., 272, 347-368 (2016) · Zbl 1410.76325
[19] Castro, M. J.; Gallardo, J. M.; Marquina, A., Jacobian-free approximate solvers for hyperbolic systems: application to relativistic magnetohydrodynamics, Comput. Phys. Commun., 219, 108-120 (2017) · Zbl 1411.65119
[20] Castro, M. J.; Gallardo, J. M.; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems, Math. Comput., 75, 1103-1134 (2006) · Zbl 1096.65082
[21] Castro, M. J.; García-Rodríguez, J. A.; González-Vida, J. M.; Parés, C.; Vázquez-Cendón, M. E., Numerical simulation of two-layer shallow water flows through channels with irregular geometry, J. Comput. Phys., 195, 202-235 (2004) · Zbl 1087.76077
[22] Castro, M. J.; LeFloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129 (2008) · Zbl 1176.76084
[23] Castro, M. J.; Morales de Luna, T.; Parés, C., Well-balanced schemes and path-conservative numerical methods, Handb. Numer. Anal., 18, 131-175 (2017) · Zbl 1368.65131
[24] Castro, M. J.; Pardo, A.; Parés, C.; Toro, E. F., On some fast well-balanced first order solvers for nonconservative systems, Math. Comput., 79, 1427-1472 (2010) · Zbl 1369.65107
[25] Chandrashekar, P.; Nkonga, B.; Meena, A. K.; Bhole, A., A path conservative finite volume method for a shear shallow water model, J. Comput. Phys., 413, Article 109457 pp. (2020) · Zbl 1436.76036
[26] Chandrashekar, P.; Klingenberg, C., A second order well-balanced finite volume scheme for Euler equations with gravity, SIAM J. Sci. Comput., 37, 3, B382-B402 (2015) · Zbl 1320.76078
[27] Degond, P.; Peyrard, P. F.; Russo, G.; Villedieu, Ph., Polynomial upwind schemes for hyperbolic systems, C. R. Acad. Sci. Paris, Ser. I, 328, 479-483 (1999) · Zbl 0933.65101
[28] Desveaux, V.; Zenk, M.; Berthon, C.; Klingenberg, C., Well-balanced schemes to capture non-explicit steady states: Ripa model, Math. Comput., 85, 300, 1571-1602 (2016) · Zbl 1382.65310
[29] Desveaux, V.; Zenk, M.; Berthon, C.; Klingenberg, C., A well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity, Int. J. Numer. Methods Fluids, 81, 2, 104-127 (2016)
[30] Dudzinski, M.; Lukáčová-Medvid’ová, M., Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts, J. Comput. Phys., 235, 82-113 (2013) · Zbl 1291.76214
[31] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[32] Dumbser, M.; Castro, M. J.; Parés, C.; Toro, E. F., ADER schemes on structured meshes for nonconservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748 (2009) · Zbl 1177.76222
[33] Dumbser, M.; Toro, E. F., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671 (2011) · Zbl 1373.76125
[34] Dumbser, M.; Hidalgo, A.; Castro, M. J.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[35] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318 (1988) · Zbl 0642.76088
[36] Einfeldt, B.; Roe, P. L.; Munz, C. D.; Sjogreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295 (1991) · Zbl 0709.76102
[37] Gaburro, E.; Castro, M. J.; Dumbser, M., Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving non-conforming meshes for the Euler equations of gas dynamics with gravity, Mon. Not. R. Astron. Soc., 447, 2251-2275 (2018)
[38] Gallardo, J. M.; Parés, C.; Castro, M. J., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys., 227, 574-601 (2007) · Zbl 1126.76036
[39] Gallardo, J. M.; Schneider, K. A.; Castro, M. J., On a class of two-dimensional incomplete Riemann solvers, J. Comput. Phys., 386, 541-567 (2019) · Zbl 1452.76114
[40] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR Sb., 47, 271-306 (1959) · Zbl 0171.46204
[41] Gosse, L., A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl., 39, 135-159 (2000) · Zbl 0963.65090
[42] Gosse, L., A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11, 02, 339-365 (2001) · Zbl 1018.65108
[43] Greenberg, J. M.; Leroux, A. Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1-16 (1996) · Zbl 0876.65064
[44] Harten, A.; Lax, P.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61 (1983) · Zbl 0565.65051
[45] Käppeli, R.; Mishra, S., Well-balanced schemes for the Euler equations with gravitation, J. Comput. Phys., 259, 199-219 (2014) · Zbl 1349.76345
[46] Lax, P.; Liu, X., Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput., 19, 319-340 (1998) · Zbl 0952.76060
[47] LeVeque, R. J., Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys., 131, 327-353 (1997) · Zbl 0872.76075
[48] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys., 146, 346-365 (1998) · Zbl 0931.76059
[49] Lukáčová-Medvid’ová, M.; Noelle, S.; Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J. Comput. Phys., 221, 122-147 (2007) · Zbl 1123.76041
[50] dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[51] Morales, T.; Castro, M. J.; Parés, C., Relation between PVM schemes and simple Riemann solvers, Numer. Methods Partial Differ. Equ., 30, 1315-1341 (2014) · Zbl 1297.65102
[52] Muñoz, M. L.; Parés, C., Godunov method for nonconservative hyperbolic systems, Math. Model. Numer. Anal., 41, 169-185 (2007) · Zbl 1124.65077
[53] Noelle, S.; Pankratz, N.; Puppo, G.; Natvig, J. R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213, 474-499 (2006) · Zbl 1088.76037
[54] Ortega, S., Esquemas de volúmenes finitos de alto orden: implementación en GPUs y aplicación a la simulación de flujos geofísicos (2016), University of Málaga, PhD Thesis
[55] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic conservation laws, Math. Comput., 38, 339-374 (1982) · Zbl 0483.65055
[56] Parés, C.; Castro, M., On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems, ESAIM: M2AN, 38, 821-852 (2004) · Zbl 1130.76325
[57] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[58] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[59] Schijf, J. B.; Schonfeld, J. C., Theoretical considerations on the motion of salt and fresh water, (Proceedings of the Minn. Int. Hydraulics Conv. (September 1953)), 321-333, Joint meeting IAHR and Hyd. Div. ASCE
[60] Schneider, K. A., Multidimensional approximate Riemann solvers for hyperbolic systems (2020), University of Málaga, PhD Thesis
[61] Tassi, P.; Bokhove, O.; Vionnet, C., Space discontinuous Galerkin method for shallow water flows - kinetic and HLLC flux, and potential vorticity generation, Adv. Water Resour., 30, 4, 998-1015 (2007)
[62] Toumi, I., A weak formulation of Roe’s approximate Riemann solver, J. Comput. Phys., 102, 360-373 (1992) · Zbl 0783.65068
[63] Toro, E. F.; Spruce, M.; Spears, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[64] van Leer, B., Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14, 361-370 (1974) · Zbl 0276.65055
[65] Vides, J.; Nkonga, B.; Audit, E., A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws, J. Comput. Phys., 280, 643-675 (2015) · Zbl 1349.76403
[66] Wendroff, B., A two-dimensional HLLE Riemann solver and associated Godunov.type difference scheme for gas dynamics, Comput. Math. Appl., 38, 175-185 (1999) · Zbl 0984.76064
[67] Wintermeyer, N.; Winters, A. R.; Gassner, G. J.; Kopriva, D. A., An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuity bathymetry, J. Comput. Phys., 340, 200-242 (2017) · Zbl 1380.65291
[68] Xing, Y.; Shu, C.-W., High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, J. Comput. Phys., 214, 567-598 (2006) · Zbl 1089.65091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.