×

An improved empirical mode decomposition based on local integral mean and its application in signal processing. (English) Zbl 1512.94029

Summary: Empirical mode decomposition (EMD) is an effective method to deal with nonlinear nonstationary data, but the lack of orthogonal decomposition theory and mode-mixing are the main problems that limit the application of EMD. In order to solve these two problems, we propose an improved method of EMD. The most important part of this improved method is to change the mean value by envelopes of signal in EMD to the mean value by the definite integral, which enables the mean value to be mathematically expressed strictly. Firstly, we prove that the signal is orthogonally decomposed by the improved method. Secondly, the Monte Carlo method of white noise is used to explain that the improved method can effectively alleviate mode-mixing. In addition, the improved method is adaptive and does not need any input parameters, and the intrinsic mode functions (IMFs) generated from it is robust to sifting. We have carried out experiments on a series of artificial and real data, the results show that the improved method is the orthogonal decomposition method and can effectively alleviate mode-mixing, and it has better decomposition performance and physical meaning than EMD, ensemble EMD (EEMD), and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). In addition, the improved method is generally more time-consuming than EMD, but far less than EEMD and CEEMDAN.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Huang, N. E.; Shen, Z.; Long, S. R., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of Royal Society A, 454, 903-995 (1998) · Zbl 0945.62093 · doi:10.1098/rspa.1998.0193
[2] Niu, X.-D.; Lu, L.-R.; Wang, J.; Han, X.-C.; Guo, S-Y.; Wang, L.-M., Electrocardiogram signal reconstruction based on mode component identification by heartbeat physical feature in an improved emperical mode decomposition domain, Acta Physica Sinica, 70, 3 (2021)
[3] Zheng, J.; Chu, H.; Struppa, D., Optimal multi-stage arrhythmia classification approach, Scientific Reports, 10, 1 (2020) · doi:10.1038/s41598-020-59821-7
[4] Varon, C.; Morales, J.; Lázaro, J., A comparative study of ECG-derived respiration in ambulatory monitoring using the single-lead ECG, Scientific Reports, 10 (2020)
[5] Borges, A. F. T.; Irrmischer, M.; Brockmeier, T.; Smit, D. J. A.; Mansvelder, H. D.; Linkenkaer-Hansen, K., Scaling behaviour in music and cortical dynamics interplay to mediate music listening pleasure, Scientific Reports, 9, 1 (2019) · doi:10.1038/s41598-019-54060-x
[6] Abboud, D.; Marnissi, Y.; Elbadaoui, M., Optimal filtering of angle-time cyclostationary signals: application to vibrations recorded under nonstationary regimes, Mechanical Systems and Signal Processing, 145 (2020) · doi:10.1016/j.ymssp.2020.106919
[7] Sun, H., High-resolution anisotropic prestack Kirchhoff dynamic focused beam migration, IEEE Sensors Journal, 99, 1 (2019)
[8] Karan, B.; Sahu, S. S.; Mahto, K., Parkinson disease prediction using intrinsic mode function based features from speech signal, Biocybernetics and Biomedical Engineering, 40, 1, 249-264 (2020) · doi:10.1016/j.bbe.2019.05.005
[9] Eseye, A. T.; Lehtonen, M., Short-term forecasting of heat demand of buildings for efficient and optimal energy management based on integrated machine learning models, IEEE Transactions on Industrial Informatics, 99, 1 (2020)
[10] Jin, Z.; Yang, Y.; Liu, Y., Stock closing price prediction based on sentiment analysis and LSTM, Neural Computing and Applications, 32, 3 (2020) · doi:10.1007/s00521-019-04504-2
[11] Huang, N. E.; Wu, Z., A review on Hilbert Huang transform: method and its applications to geophysical studies, Reviews of Geophysics, 46, 2 (2008) · doi:10.1029/2007rg000228
[12] Moore, K. J.; Kurt, M.; Eriten, M., Wavelet-bounded empirical mode decomposition for vibro-impact analysis, Nonlinear Dynamics, 93, 3, 1559-1577 (2018)
[13] Kizhner, S.; Blank, K.; Flatley, T., On certain theoretical developments underlying the hilbert-huang transform, Proceedings of the IEEE Conference on Aerospace
[14] Hayashi, R., Subharmonic response of polymer contrast agents based on the empirical mode decomposition, IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 99, 1 (2016)
[15] Wang, C.; Kemao, Q.; Da, F., Regenerated phase-shifted sinusoid-assisted empirical mode decomposition, IEEE Signal Processing Letters, 23, 4, 556-560 (2016) · doi:10.1109/lsp.2016.2537376
[16] Rongxi, W., Hilbert-Huang transform based pseudo-periodic feature extraction of nonlinear time series, Proceedings of the 2015 7th International Conference on Measuring Technology and Mechatronics Automation IEEE
[17] Hsu, T.-F.; Jao, K.-H.; Hung, Y.-C., Phase synchronization in a two-mode solid state laser: periodic modulations with the second relaxation oscillation frequency of the laser output, Physics Letters A, 378, 44, 3269-3273 (2014) · Zbl 1303.78011 · doi:10.1016/j.physleta.2014.09.035
[18] Singh, H. R., Real-time implementation of signal processing techniques for disturbances detection, IEEE Transactions on Industrial Electronics, 1 (2018)
[19] Zhang, D.; Zhou, H. Y.; Xue, Y., A novel facial feature extraction method based on Empirical Mode Decomposition, Proceedings of the International Conference on Machine Learning & Cybernetics IEEE
[20] Motin, M. A.; Karmakar, C. K.; Palaniswami, M., Selection of empirical mode decomposition techniques for extracting breathing rate from PPG, IEEE Signal Processing Letters, 26, 4, 592-596 (2019) · doi:10.1109/lsp.2019.2900923
[21] Zhaohua, W. U.; Huang, N. E., Ensemble empirical mode decomposition: a noise-assisted data analysis method, Advances in Adaptive Data Analysis, 1, 1, 1-41 (2009)
[22] Yeh, J.-R.; Shieh, J.-S.; Huang, N. E., Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Advances in Adaptive Data Analysis, 2, 2, 135-156 (2010) · doi:10.1142/s1793536910000422
[23] Torres, M. E.; Colominas, M. A.; Schlotthauer, G.; Flandrin, P., A complete ensemble empirical mode decomposition with adaptive noise, Proceedings of the IEEE International Conference on Acoustics IEEE
[24] Gilles, J., Empirical wavelet transform, IEEE Transactions on Signal Processing, 61, 16, 3999-4010 (2013) · Zbl 1393.94240 · doi:10.1109/tsp.2013.2265222
[25] Dragomiretskiy, K.; Zosso, D., Variational mode decomposition, IEEE Transactions on Signal Processing, 62, 3, 531-544 (2014) · Zbl 1394.94163 · doi:10.1109/tsp.2013.2288675
[26] Jain, P.; Pachori, R. B., An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix, Journal of the Franklin Institute, 352, 10 (2015) · Zbl 1395.94122 · doi:10.1016/j.jfranklin.2015.05.038
[27] Li, H.; Li, Z.; Mo, W., A time varying filter approach for empirical mode decomposition, Signal Processing, 138, 146-158 (2017) · doi:10.1016/j.sigpro.2017.03.019
[28] Zheng, J.; Pan, H.; Liu, T.; Liu, Q., Extreme-point weighted mode decomposition, Signal Processing, 142, 366-374 (2018) · doi:10.1016/j.sigpro.2017.08.002
[29] Zheng, J.; Cheng, J.; Yang, Y., A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy, Mechanism and Machine Theory, 70, 6, 441-453 (2013) · doi:10.1016/j.mechmachtheory.2013.08.014
[30] Kopsinis, Y.; Mclaughlin, S., Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach, IEEE Transactions on Signal Processing, 56, 1, 1-13 (2008) · Zbl 1390.94248 · doi:10.1109/tsp.2007.901155
[31] Smith, J. S.; Jonathan, S., The local mean decomposition and its application to EEG perception data, Journal of the Royal Society Interface, 2, 5, 443-454 (2005) · doi:10.1098/rsif.2005.0058
[32] Wu, Z.; Huang, N. E., A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings Mathematical Physical & Engineering ences, 460, 2046, 1597-1611 (2004) · Zbl 1062.62005 · doi:10.1098/rspa.2003.1221
[33] Huang, N. E.; Huang, E.; Wu, M. L. C., A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proceedings Mathematical Physical & Engineering ences, 459, 2037, 2317-2345 (2003) · Zbl 1045.94503 · doi:10.1098/rspa.2003.1123
[34] Hong, H.; Wang, X.; Tao, Z., Local integral mean-based sifting for empirical mode decomposition, IEEE Signal Processing Letters, 16, 10, 841-844 (2009)
[35] Intergovernmental Panel on Climate Change, Climate Change 2001: The Scientific Basis-Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (2001), Cambridge, UK: Cambridge Univ Press, Cambridge, UK
[36] Flandrin, P.; Rilling, G.; Goncalves, P., Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, 11, 2, 112-114 (2004) · doi:10.1109/lsp.2003.821662
[37] Li, H.; Wang, C.; Zhao, D., Filter bank properties of envelope modified EMD methods, Iet Signal Processing, 12, 7, 844-851 (2018) · doi:10.1049/iet-spr.2017.0399
[38] Li, H.; Zhao, J.; Zhang, X.; Teng, H., Gear crack level classification based on EMD and EDT, Mathematical Problems in Engineering, 2015 (2015) · Zbl 1395.94135 · doi:10.1155/2015/150127
[39] Zhao, D.; Huang, Z.; Li, H.; Chen, J.; Wang, P., An improved EEMD method based on the adjustable cubic trigonometric cardinal spline interpolation, Digital Signal Processing, 64, 41-48 (2017) · doi:10.1016/j.dsp.2016.12.007
[40] Flandrin, P.; Paulo, G. O., Empirical mode decompositions as data-driven wavelet-like expansions, International Journal of Wavelets Multiresolution & Information Processing, 2, 4, 477-496 (2008) · Zbl 1092.42502
[41] Rilling, G.; Flandrin, P., One or two frequencies−the empirical mode decomposition answers, IEEE Transactions on Signal Processing, 56, 1, 85-95 (2008) · Zbl 1390.94382 · doi:10.1109/tsp.2007.906771
[42] Wu, Z.; Huang, N. E.; Long, S. R.; Peng, C.-K., On the trend, detrending, and variability of nonlinear and nonstationary time series, Proceedings of the National Academy of Sciences, 104, 38, 14889-14894 (2007) · doi:10.1073/pnas.0701020104
[43] Huang, N. E.; Wu, Z.; Pinzón, J. E., Reductions OF noise and uncertainty IN annual global surface temperature anomaly data, Advances in Adaptive Data Analysis, 1, 3, 447-460 (2009) · doi:10.1142/s1793536909000151
[44] Huang, N. E.; Shen, S. S. P., Hilbert-Huang Transform and its Applications (2005), Singapore: World Scientific, Singapore · Zbl 1087.62500
[45] Moody, G. B.; Mark, R. G., The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medicine and Biology Magazine, 20, 3, 45-50 (2001) · doi:10.1109/51.932724
[46] Chiang, H.-T.; Hsieh, Y.-Y.; Fu, S.-W.; Hung, K.-H.; Tsao, Y.; Chien, S.-Y., Noise reduction in ECG signals using fully convolutional denoising autoencoders, IEEE Access, 7, 60806-60813 (2019) · doi:10.1109/access.2019.2912036
[47] Vargas, R. N.; Paschoarelli Veiga, A. C., Electrocardiogram signal denoising by clustering and soft thresholding, IET Signal Processing, 12, 9 (2018) · doi:10.1049/iet-spr.2018.5162
[48] Satija, U.; Ramkumar, B.; Manikandan, M. S., Automated ECG noise detection and classification system for unsupervised healthcare monitoring, IEEE Journal of Biomedical and Health Informatics, 22, 3, 722-732 (2018) · doi:10.1109/jbhi.2017.2686436
[49] Arumugam, R.; Jebaraj, J., Ensemble empirical mode decomposition-based optimised power line interference removal algorithm for electrocardiogram signal, Iet Signal Processing, 10, 583-591 (2016)
[50] Tracey, B. H.; Miller, E. L., Nonlocal means denoising of ECG signals, IEEE Transactions on Biomedical Engineering, 59, 9, 2383 (2012) · doi:10.1109/tbme.2012.2208964
[51] Karagiannis, A.; Constantinou, P., Noise components identification in biomedical signals based on empirical mode decomposition, Proceedings of the 9th International Conference on IEEE Information Technology and Applications in Biomedicine (ITAB 2009)
[52] Moody, G. B.; Muldrow, W. E.; Mark, R. G., A noise stress test for arrhythmia detectors, Computers in Cardiology, 11, 381-384 (1984)
[53] Ibtehaz, N.; Rahman, M. S.; Rahman, M. S., VFPred: a fusion of signal processing and machine learning techniques in detecting ventricular fibrillation from ECG signals, Biomedical Signal Processing and Control, 49, 349-359 (2019)
[54] Jarchi, D.; Casson, A. J., Towards photoplethysmography-based estimation of instantaneous heart rate during physical activity, IEEE Transactions on Biomedical Engineering, 64, 9, 2042-2053 (2017) · doi:10.1109/tbme.2017.2668763
[55] Karagiannis, A.; Constantinou, P., Noise-assisted data processing with empirical mode decomposition in biomedical signals, IEEE Transactions on Information Technology in Biomedicine, 15, 1, 11-18 (2011) · doi:10.1109/titb.2010.2091648
[56] Blanco-Velasco, M.; Cruz-Roldán, F.; Godino-Llorente, J. I.; Barner, K. E., Nonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detection, IEEE Transactions on Biomedical Engineering, 57, 10, 2402-2412 (2010) · doi:10.1109/tbme.2010.2048109
[57] Wang, G., ON intrinsic mode function, Advances in Adaptive Data Analysis, 2, 3, 277-293 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.