×

zbMATH — the first resource for mathematics

On the use of the \(K\)-means algorithm for determination of mass distributions in dumbbell-like celestial bodies. (Russian. English summary) Zbl 1395.70015
Summary: It is well known that several small celestial objects are of irregular shape. In particular, there exist asteroids of the so-called “dog-bone” shape. It turns out that approximation of these bodies by dumb-bells, as proposed by V. V. Beletskiĭ, provides an effective tool for analytical investigation of dynamics in vicinities of such bodies. There remains the question of how to divide reasonably a “dogbone” body into two parts using available measurement data.
In this paper we introduce an approach based on the so-called \(K\)-mean algorithm proposed by the prominent Polish mathematician H. Steinhaus.
MSC:
70F05 Two-body problems
70K20 Stability for nonlinear problems in mechanics
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
PDF BibTeX XML Cite
Full Text: DOI MNR
References:
[1] [1] Beletsky V. V., “Generalized restricted circular three-body problem as a model for dynamics of binary asteroids”, Cosmic Research, 45:5 (2007), 408-416
[2] [2] Beletskii V. V., Ponomareva O. N., “A parametric analysis of relative equilibrium stability in the gravitational field”, Kosmicheskie Issledovaniya, 28:5 (1990), 664-675 (Russian)
[3] [3] Beletskii V. V., Rodnikov A. V., “Stability of triangle libration points in generalized restricted circular three-body problem”, Cosmic Research, 46:1 (2008), 40-48
[4] [4] Burov A. A., Guerman A. D., Kosenko I. I., Nikonov V. I., “On the gravity of dumbbell-like bodies represented by a pair of intersecting balls”, Nelin. Dinam., 13:2 (2017), 243-256 (Russian) · Zbl 1393.70035
[5] [5] de La Vallée Poussin Ch.-J., Leçons de mécanique analytique, v. 1, Vecteurs, cinematique, dynamique du point, statique, 2nd ed., UCL, Louvain, 1932
[6] [6] Duboshin G. N., “On one particular case of the problem of the translational-rotational motion of two bodies”, Sov. Astron., 3:1 (1959), 154-165
[7] [7] Karapetyan A. V., Sakhokia I. D., “On bifurcation and stability of steady motions of two gravitating bodies”, J. Appl. Math. Mech., 56:6 (1992), 839-842 · Zbl 0790.70022
[8] [8] Rodnikov A. V., “Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers”, Nelin. Dinam., 10:2 (2014), 213-222 (Russian) · Zbl 1372.70063
[9] [9] Bartczak P., Breiter S., “Double material segment as the model of irregular bodies”, Celestial Mech. Dynam. Astronom., 86:2 (2003), 131-141 · Zbl 1062.70586
[10] [10] Bartczak P., Breiter S., Jusiel P., “Ellipsoids, material points and material segments”, Celestial Mech. Dynam. Astronom., 96:1 (2006), 31-48 · Zbl 1116.70020
[11] [11] Benner L. A. M., Hudson R. S., Ostro S. J., Rosema K. D., Giorgini J. D., Yeomans D. K., Jurgens R. F., Mitchell D. L., Winkler R., Rose R., Slade M. A., Thomas M. L., Pravec P., “Radar observations of asteroid \(2063\) Bacchus”, Icarus, 139:2 (1999), 309-327
[12] [12] Chanut T. G. G., Aljbaae S., Carruba V., “Mascon gravitation model using a shaped polyhedral source”, Mon. Not. R. Astron. Soc., 450:4 (2015), 3742-3749
[13] [13] Herrera-Succarat E., The full problem of two and three bodies: Application to asteroids and binaries, Univ. of Surrey, Guildford, 2012, 172 pp.
[14] [14] Herrera-Succarat E., Palmer P. L., Roberts M., “Modeling the gravitational potential of a nonspherical asteroid”, J. Guid. Control Dyn., 36:3 (2013), 790-798
[15] [15] Hitt D. L., Pearl J. M., “Asteroid gravitational models using mascons derived from polyhedral sources”, AIAA/AAS Astrodynamics Specialist Conference (Long Beach, Calif., Sept 2016), 12 pp.
[16] [16] Hudson R. S., “Three-dimensional reconstruction of asteroids from radar observations”, Remote Sensing Rev., 8 (1993), 195-203
[17] [17] Kholshevnikov K. V., Shaidulin V. Sh., “Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential”, Celestial Mech. Dynam. Astronom, 122:4 (2015), 391-403 · Zbl 1322.70010
[18] [18] NEAR collected shape and gravity models, PDS Asteroid/Dust Archive
[19] [19] Park R. S., Werner R. A., Bhaskaran S., “Estimating small-body gravity field from shape model and navigation data”, J. Guid. Control Dyn., 33:1 (2010), 212-221
[20] [20] Pucacco J., Boccaletti D., Belmonte C., “On the orbit structure of the logarithmic potential”, Astrophys. J., 669:1 (2007), 202-217
[21] [21] Riaguas A., Elipe A., Lara M., “Periodic orbits around a massive straight segment”, Celestial Mech. Dynam. Astronom., 73:1-4 (1999), 169-178 · Zbl 0954.70013
[22] [22] Riaguas A., Elipe A., López-Moratalla T., “Non-linear stability of the equilibria in the gravity field of a finite straight segment”, Celestial Mech. Dynam. Astronom., 81:3 (2001), 235-248 · Zbl 1002.70024
[23] [23] Small body radar shape models, PDS Asteroid/Dust Archive
[24] [24] Steinhaus H., “Sur la division des corps matériels en parties”, Bull. Acad. Polon. Sci. Cl. III, 4 (1956), 801-804
[25] [25] Takahashi Yu., Scheeres D. J., Werner R. A., “Surface gravity fields for asteroids and comets”, J. Guid. Control Dyn., 36:2 (2013), 362-374
[26] [26] Takahashi Yu., Scheeres D. J., “Small body surface gravity fields via spherical harmonic expansions”, Celestial Mech. Dynam. Astronom., 119:2 (2014), 169-206 · Zbl 1298.70019
[27] [27] Turconi A., Palmer Ph., Roberts M., “Efficient modelling of small bodies gravitational potential for autonomous proximity operations”, Astrodynamics Network AstroNet-II, Astrophys. Space Sci. Proc., 44, eds. G. Gómez, J. J. Masdemont, Springer, Cham, 2016, 257-272
[28] [28] Werner R. A., “Spherical harmonic coefficients for the potential of a constant-density polyhedron”, Comput. Geosci., 23:10 (1997), 1071-1077
[29] [29] Werner R. A., “The gravitational potential of a homogeneous polyhedron or don’t cut corners”, Celestial Mech. Dynam. Astronom., 59:3 (1994), 253-278 · Zbl 0825.70059
[30] [30] Werner R. A., Scheeres D. J., “Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia”, Celestial Mech. Dynam. Astronom., 65:3 (1996), 313-344 · Zbl 0881.70008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.