# zbMATH — the first resource for mathematics

Bounds on polygons of higher rank numerical ranges. (English) Zbl 1312.15026
Summary: Research in higher rank numerical ranges has originally been motivated by problems in quantum information theory, particularly in quantum error correction. The higher rank numerical range generalizes the classical numerical range of an operator. The higher rank numerical range is typically not a polygon, however when we consider normal operators the higher rank numerical range is a polygon in the complex plane $$\mathbb{C}$$. In this article, we give a new proof of an upper bound on the number of sides of the higher-rank numerical range of a normal operator and we also find a lower bound for the number of sides of the higher-rank numerical range of a unitary operator. We show that these bounds are the best possible.
##### MSC:
 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory 47A12 Numerical range, numerical radius
##### Keywords:
higher rank numerical ranges
Full Text:
##### References:
 [1] Choi, M.-D.; Giesinger, M.; Holbrook, J. A.; Kribs, D. W., Geometry of higher-rank numerical ranges, Linear Multilinear Algebra, 56, 1-2, (2008) [2] Choi, M.-D.; Holbrook, J. A.; Kribs, D. W.; Życzkowski, K., Higher rank numerical ranges of unitary and normal matrices, Oper. Matrices, 1, 409-426, (2007) · Zbl 1133.15021 [3] Choi, M.-D.; Kribs, D. W.; Życzkowski, K., Quantum error correcting codes from the compression formalism, Rep. Math. Phys., 58, 77-91, (2006) · Zbl 1120.81011 [4] Choi, M.-D.; Kribs, D. W.; Życzkowski, K., Higher rank numerical ranges and compression problems, Linear Algebra Appl., 418, 828-839, (2006) · Zbl 1106.15019 [5] Clark, S.; Li, C.-K.; Mahlea, J.; Rodman, L., Linear preservers of higher rank numerical ranges and radii, Linear Multilinear Algebra, 57, 5, (2009) [6] Gau, H.-L.; Li, C.-K.; Poon, Y.-T.; Sze, N.-S., Higher rank numerical ranges of normal matrices, SIAM J. Matrix Anal. Appl., 32, 1, 23-43, (2011) · Zbl 1223.15032 [7] Gustafson, K. E.; Rao, D. K.M., Numerical range — the field of values of linear operators and matrices, (1997), Springer-Verlag New York, Inc. [8] Li, C.-K.; Poon, Y.-T.; Sze, N.-S., Condition for the higher rank numerical range to be non-empty, Linear Multilinear Algebra, 57, 4, 365-368, (2009) · Zbl 1172.15014 [9] Li, C.-K.; Sze, N.-S., Canonical forms, higher rank numerical ranges, totally isotropic subspaces and matrix equations, Proc. Amer. Math. Soc., 136, 3013-3023, (2008) · Zbl 1152.15027 [10] Mudalige, N. C., Higher rank numerical ranges of normal operators, (2010), Department of Mathematics & Statistics, University of Guelph, Master’s thesis [11] Roldán-Pensado, E., Infinite numerical range is convex, Linear Multilinear Algebra, 56, 6, 731-733, (2008) · Zbl 1156.47004 [12] Woerdeman, H. J., The higher rank numerical range is convex, Linear Multilinear Algebra, 56, 1-2, 65-67, (2008) · Zbl 1137.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.