zbMATH — the first resource for mathematics

Striated populations in disordered environments with advection. (English) Zbl 1400.92430
Summary: Growth in static and controlled environments such as a Petri dish can be used to study the spatial population dynamics of microorganisms. However, natural populations such as marine microbes experience fluid advection and often grow up in heterogeneous environments. We investigate a generalized Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation describing single species population subject to a constant flow field and quenched random spatially inhomogeneous growth rates with a fertile overall growth condition. We analytically and numerically demonstrate that the non-equilibrium steady-state population density develops a flow-driven striation pattern. The striations are highly asymmetric with a longitudinal correlation length that diverges linearly with the flow speed and a transverse correlation length that approaches a finite velocity-independent value. Linear response theory is developed to study the statistics of the steady states. Theoretical predictions show excellent agreement with the numerical steady states of the generalized FKPP equation obtained from Lattice Boltzmann simulations. These findings suggest that, although the growth disorder can be spatially uncorrelated, correlated population structures with striations emerge naturally at sufficiently strong advection.

92D25 Population dynamics (general)
Full Text: DOI
[1] May, R. M.; Anderson, R. M., Parasitology, 100, S89 (1990)
[2] Gotelli, N. J., A Primer of Ecology (2001), Sinauer Associates, Inc.
[3] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications (2001), Springer-Verlag New York Incorporated
[4] Rietkerk, M.; Dekker, S. C.; de Ruiter, P. C.; van de Koppel, J., Science, 305, 1926 (2004)
[5] Rietkerk, M.; Van de Koppel, J., Trends Ecol. Evol., 23, 169 (2008)
[6] Budrene, E. O.; Berg, H. C., Nature, 349, 630 (1991)
[7] Brenner, M. P.; Levitov, L. S.; Budrene, E. O., Biophys. J., 74, 1677 (1998)
[8] Cates, M.; Marenduzzo, D.; Pagonabarraga, I.; Tailleur, J., Proc. Natl. Acad. Sci., 107, 11715 (2010)
[9] Liu, Q.-X.; Weerman, E. J.; Herman, P. M.; Olff, H.; van de Koppel, J., Proc. R. Soc. Lond. B, Biol. Sci., 279, 2744 (2012)
[10] Liu, Q.-X.; Herman, P. M.; Mooij, W. M.; Huisman, J.; Scheffer, M.; Olff, H.; van de Koppel, J., Nat. Commun., 5 (2014)
[11] van de Koppel, J.; Rietkerk, M.; Dankers, N.; Herman, P. M., Am. Nat., 165, E66 (2005)
[12] Von Hardenberg, J.; Meron, E.; Shachak, M.; Zarmi, Y., Phys. Rev. Lett., 87, Article 198101 pp. (2001)
[13] Borgogno, F.; D’Odorico, P.; Laio, F.; Ridolfi, L., Rev. Geophys., 47 (2009)
[14] Tél, T.; de Moura, A.; Grebogi, C.; Károlyi, G., Phys. Rep., 413, 91 (2005)
[15] Neufeld, Z., Chaos, 22, Article 037102 pp. (2012)
[16] McKiver, W. J.; Neufeld, Z., Phys. Rev. E, 79, Article 061902 pp. (2009)
[17] Pigolotti, S.; Benzi, R.; Jensen, M. H.; Nelson, D. R., Phys. Rev. Lett., 108, Article 128102 pp. (2012)
[18] Benzi, R.; Jensen, M. H.; Nelson, D. R.; Perlekar, P.; Pigolotti, S.; Toschi, F., Eur. Phys. J. Spec. Top., 204, 57 (2012)
[19] Nelson, D. R., Annu. Rev. Biophys., 41, 371 (2012)
[20] Dahmen, K. A.; Nelson, D. R.; Shnerb, N. M., Statistical Mechanics of Biocomplexity, 124-151 (1999), Springer
[21] Dahmen, K. A.; Nelson, D. R.; Shnerb, N. M., J. Math. Biol., 41, 1 (2000)
[22] Desai, M. M.; Nelson, D. R., Theor. Popul. Biol., 67, 33 (2005)
[23] Nelson, D. R.; Shnerb, N. M., Phys. Rev. E, 58, 1383 (1998)
[24] Lin, A. L.; Mann, B. A.; Torres-Oviedo, G.; Lincoln, B.; Käs, J.; Swinney, H. L., Biophys. J., 87, 75 (2004)
[25] Lutscher, F.; Nisbet, R. M.; Pachepsky, E., Theor. Ecol., 3, 271 (2010)
[26] Pachepsky, E.; Lutscher, F.; Nisbet, R.; Lewis, M., Theor. Popul. Biol., 67, 61 (2005)
[27] Pringle, J. M.; Blakeslee, A. M.H.; Byers, J. E.; Roman, J., Proc. Natl. Acad. Sci., 108, 15288 (2011)
[28] Lutscher, F.; McCauley, E.; Lewis, M. A., Theor. Popul. Biol., 71, 267 (2007)
[30] Neufeld, Z.; Hernández-García, E., Chemical and Biological Processes in Fluid Flows (2009), World Scientific
[31] Fisher, R. A., Ann. Eugenics, 7, 355 (1937)
[32] Kolmogoroff, A.; Petrovsky, I.; Piscounoff, N., Moscow Univ. Math. Bull., 1, 1 (1937)
[33] Murray, J. D., Mathematical Biology I: An Introduction (2002), Springer-Verlag New York Incorporated
[34] Neicu, T.; Pradhan, A.; Larochelle, D.; Kudrolli, A., Phys. Rev. E, 62, 1059 (2000)
[35] Molinari, L. G., J. Phys. A, 42, Article 265204 pp. (2009)
[36] Hatano, N.; Nelson, D. R., Phys. Rev. B, 58, 8384 (1998)
[37] Hatano, N.; Nelson, D. R., Phys. Rev. Lett., 77, 570 (1996)
[38] Shnerb, N. M.; Nelson, D. R., Phys. Rev. Lett., 80, 5172 (1998)
[39] Kessler, D. A.; Shnerb, N. M., New J. Phys., 11, Article 043017 pp. (2009)
[40] Juhász, R., J. Stat. Mech. Theory Exp., 2013, P10023 (2013)
[41] Geyrhofer, L.; Hallatschek, O., J. Stat. Mech. Theory Exp., 2013, P01007 (2013)
[42] Missel, A. R.; Dahmen, K. A., Phys. Rev. E, 79, Article 021126 pp. (2009)
[43] Zimmermann, W.; Seesselberg, M.; Petruccione, F., Phys. Rev. E, 48, 2699 (1993)
[44] Buceta, J.; Lindenberg, K., Phys. Rev. E, 68, Article 011103 pp. (2003)
[45] Cross, M.; Greenside, H., Pattern Formation and Dynamics in Nonequilibrium Systems (2009), Cambridge University Press
[46] Abrahams, E., 50 years of Anderson Localization, vol. 24 (2010), World Scientific
[47] Lugo, C. A.; McKane, A. J., Phys. Rev. E, 78, Article 051911 pp. (2008)
[48] McKane, A. J.; Biancalani, T.; Rogers, T., Bull. Math. Biol., 76, 895 (2014)
[49] Hassani, S., Mathematical Physics: a Modern Introduction to its Foundations (2013), Springer Science
[50] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (1964), Courier Corporation
[51] Cali, A.; Succi, S.; Cancelliere, A.; Benzi, R.; Gramignani, M., Phys. Rev. A, 45, 5771 (1992)
[52] Succi, S., Europhys. Lett., 109, 50001 (2015)
[53] Succi, S., The Lattice-Boltzmann Equation (2001), Oxford University Press: Oxford University Press Oxford
[54] Succi, S., Internat. J. Modern Phys. C, 25 (2014)
[55] Haller, G.; Beron-Vera, F., J. Fluid Mech., 731, R4 (2013)
[56] Haller, G., Annu. Rev. Fluid Mech., 47, 137 (2015)
[57] Atis, S.; Saha, S.; Auradou, H.; Salin, D.; Talon, L., Phys. Rev. Lett., 110, Article 148301 pp. (2013)
[58] Saha, S.; Atis, S.; Salin, D.; Talon, L., Europhys. Lett., 101, 38003 (2013)
[59] Gueudré, T.; Dubey, A. K.; Talon, L.; Rosso, A., Phys. Rev. E, 89, Article 041004 pp. (2014)
[60] Zeidler, E., Quantum Field Theory II (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.