×

zbMATH — the first resource for mathematics

Crystallography on curved surfaces. (English) Zbl 1160.82355
Summary: We study static and dynamical properties that distinguish 2D crystals constrained to lie on a curved substrate from their flat-space counterparts. A generic mechanism of dislocation unbinding in the presence of varying Gaussian curvature is presented in the context of a model surface amenable to full analytical treatment. We find that glide diffusion of isolated dislocations is suppressed by a binding potential of purely geometrical origin. Finally, the energetics and biased diffusion dynamics of point defects such as vacancies and interstitials are explained in terms of their geometric potential.

MSC:
82D25 Statistical mechanical studies of crystals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bausch, Science 299 (5613) pp 1716– (2003) · doi:10.1126/science.1081160
[2] Park, Science 276 (5317) pp 1401– (1997) · doi:10.1126/science.276.5317.1401
[3] Kramer, Nature; Physical Science (London) 437 (7060) pp 824– (2005) · doi:10.1038/437824b
[4] EUROPHYS LETT 70 pp 136– (2005) · doi:10.1209/epl/i2004-10464-2
[5] EUROPHYS LETT 72 pp 767– (2005) · doi:10.1209/epl/i2005-10307-8
[6] Heuser, The Journal of Cell Biology 108 (2) pp 401– (1989) · doi:10.1083/jcb.108.2.401
[7] PHYS REV E 68 pp 061905– (2003) · doi:10.1103/PhysRevE.68.061905
[8] Ganser, Science 283 (5398) pp 80– (1999) · doi:10.1126/science.283.5398.80
[9] Li, Nature; Physical Science (London) 407 (6802) pp 409– (2000) · doi:10.1038/35030177
[10] PHYS REV B 62 pp 8738– (2000) · doi:10.1103/PhysRevB.62.8738
[11] J PHYS C SOLID STATE PHYS 17 pp 5473– (1984) · doi:10.1088/0022-3719/17/30/019
[12] PHYS REV E 70 pp 051105– (2004) · doi:10.1103/PhysRevE.70.051105
[13] Seung 38 (2) pp 1005– (1988) · doi:10.1103/PhysRevA.38.1005
[14] Lipowsky, Nature materials 4 (5) pp 407– (2005) · doi:10.1038/nmat1376
[15] PHYS REV E 72 pp 036110– (2005) · doi:10.1103/PhysRevE.72.036110
[16] PHYS REV B 25 pp 579– (1982) · doi:10.1103/PhysRevB.25.579
[17] PHYSICAL REVIEW LETTERS 93 pp 215– (2004)
[18] PHYS REV E 61 pp 1599– (2000) · doi:10.1103/PhysRevE.61.1599
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.