×

zbMATH — the first resource for mathematics

Survival probabilities at spherical frontiers. (English) Zbl 1342.92140
Summary: Motivated by tumor growth and spatial population genetics, we study the interplay between evolutionary and spatial dynamics at the surfaces of three-dimensional, spherical range expansions. We consider range expansion radii that grow with an arbitrary power-law in time: \(R(t) =R_0(1+t/t^\ast)^\Theta\), where \(\Theta\) is a growth exponent, \(R_0\) is the initial radius, and \(t^\ast\) is a characteristic time for the growth, to be affected by the inflating geometry. We vary the parameters \(t^\ast\) and \(\Theta\) to capture a variety of possible growth regimes. Guided by recent results for two-dimensional inflating range expansions, we identify key dimensionless parameters that describe the survival probability of a mutant cell with a small selective advantage arising at the population frontier. Using analytical techniques, we calculate this probability for arbitrary \(\Theta\). We compare our results to simulations of linearly inflating expansions (\(\Theta = 1\) spherical Fisher-Kolmogorov-Petrovsky-Piscunov waves) and treadmilling populations (\(\Theta = 0\), with cells in the interior removed by apoptosis or a similar process). We find that mutations at linearly inflating fronts have survival probabilities enhanced by factors of 100 or more relative to mutations at treadmilling population frontiers. We also discuss the special properties of “marginally inflating” \((\Theta = 1 / 2)\) expansions.
MSC:
92D15 Problems related to evolution
92D10 Genetics and epigenetics
92D99 Genetics and population dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alarcón, T.; Byrne, H. M.; Maini, P. K., A multiple scale model for tumor growth, Multiscale Model. Simul., 3, 440-475, (2005) · Zbl 1107.92019
[2] Alessandri, K.; Sarangi, B. R.; Gurchenkov, V. V.; Sinha, B.; Kießling, T. R.; Fetler, L.; Rico, F.; Scheuring, S.; Lamaze, C.; Simon, A.; Geraldo, S.; Vignjević, D.; Doméjean, H.; Rolland, L.; Funfak, A.; Bibette, J.; Bremond, N.; Nassoy, P., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, PNAS, 110, 14843-14848, (2013)
[3] Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E., Interacting particle systems in time-dependent geometries, J. Stat. Mech., 2013, P09006, (2013)
[4] Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E., Scale-invariant growth processes in expanding space, Phys. Rev. E, 87, 020102(R), (2013)
[5] Ali, A.; Grosskinsky, S., Pattern formation through genetic drift at expanding population fronts, Adv. Complex Syst., 13, 3, 349-366, (2010) · Zbl 1205.92050
[6] Anderson, A., Hallatschek, O., 2014. Standing variation in 2D range expansions, unpublished work.
[7] Antal, T., Krapivsky, P.L., Nowak, M.A., 2013. Spatial evolution of tumors with successive driver mutations. arXiv:1308.1564.
[8] Arvo, J., Fast random rotation matrices, (Kirk, D., Graphics Gems III, (1992), Academic Press Inc. London), 117-120
[9] Barton, N. H.; Depaulis, F.; Etheridge, A. M., Neutral evolution in spatially continuous populations, Theor. Popul. Biol., 61, 31-48, (2002) · Zbl 1038.92028
[10] Bennett, C. H., Serially deposited amorphous aggregates of hard spheres, J. Appl. Phys., 43, 6, 2727-2734, (1972)
[11] Bramson, M.; Griffeath, D., On the Williams-bjerknes tumour growth model: I, Ann. Probab., 9, 2, 173-185, (1981) · Zbl 0459.92012
[12] Brú, A.; Albertos, S.; Subiza, J. L.; García-Asenjo, J. L.; Brú, I., The universal dynamics of tumor growth, Biophys. J., 85, 2948-2961, (2003)
[13] Cheng, G.; Tse, J.; Jain, R. K.; Munn, L. L., Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PLoS One, 4, e4632, (2009)
[14] Cox, J. T.; Griffeath, D., Diffusive clustering in the two dimensional voter model, Ann. Probab., 14, 2, 347-370, (1986) · Zbl 0658.60131
[15] Crow, J. F.; Kimura, M., An introduction to population genetics theory, (1970), Harper & Row New York · Zbl 0246.92003
[16] Debnath, J.; Muthuswamy, S. K.; Brugge, J. S., Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures, Methods, 30, 256-268, (2003)
[17] de Dominicis, C., Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques, J. Phys. Colloq., 37, (1976), C1-247-C1-253
[18] de Vladar, H. P.; Barton, N., The contribution of statistical physics to evolutionary biology, Trends Ecol. Evol., 26, 424-432, (2011)
[19] Doering, C. R.; Mueller, C.; Smereka, P., Interacting particles, the stochastic Fisher-Kolmogorov-petrovsky-Piscounov equation, and duality, Physica A, 325, 243-259, (2003) · Zbl 1025.60027
[20] Duty, T. L., Broken symmetry and critical phenomena in population genetics: the stepping-stone model, (2000), The University of British Columbia, (Ph.D. thesis)
[21] Escudero, C., Nonlinear field theories during homogeneous spatial dilation, J. Phys. A: Math. Theor., 46, 355403, (2013) · Zbl 1276.82039
[22] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 355-369, (1937) · JFM 63.1111.04
[23] Folkman, J.; Hochberg, M., Self-regulation of growth in three dimensions, J. Exp. Med., 138, 745-753, (1973)
[24] Gardiner, C. W., Handbook of stochastic methods, (1985), Springer-Verlag Berlin · Zbl 0862.60050
[25] Gradshteyn, I. S.; Ryzhik, I. M., Table of integrals, series, and products, (2007), Academic Press Oxford · Zbl 1208.65001
[26] Hallatschek, O.; Korolev, K. S., Fisher waves in the strong noise limit, Phys. Rev. Lett., 103, 108103, (2009)
[27] Hallatschek, O.; Nelson, D. R., Life at the front of an expanding population, Evolution, 64, 1, 193-206, (2010)
[28] Hirschhaeuser, F.; Menne, H.; Dittfeld, C.; West, J.; Mueller-Klieser, W.; Kunz-Schughart, L. A., Multicellular tumor spheroids: an underestimated tool is catching up again, J. Biotechnol., 148, 3-15, (2010)
[29] Janssen, H.-K., On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Z. Phys. B, 23, 377-380, (1976)
[30] Janssen, H.-K., Survival and percolation probabilities in the field theory of growth models, J. Phys.: Condens. Matter, 17, 20, S1973, (2005)
[31] Korolev, K. S.; Avlund, M.; Hallatschek, O.; Nelson, D. R., Genetic demixing and evolution in linear stepping stone models, Rev. Modern Phys., 82, 2, 1691-1718, (2010)
[32] Korolev, K. S.; Müller, M. J.I.; Karohan, N.; Murray, A. W.; Hallatschek, O.; Nelson, D. R., Selective sweeps in growing microbial colonies, Phys. Biol., 9, 2, 026008, (2012)
[33] Korolev, K. S.; Xavier, J. B.; Nelson, D. R.; Foster, K. R., A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies, Am. Nat., 178, 4, 538-552, (2011)
[34] Kuhr, J.-T.; Leisner, M.; Frey, E., Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model, New J. Phys., 13, 113013, (2011)
[35] Kunz-Schughart, L. A., Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor, Cell Biol. Int., 23, 3, 157-161, (1999)
[36] Lavrentovich, M. O.; Korolev, K. S.; Nelson, D. R., Radial domany-kinzel models with mutation and selection, Phys. Rev. E, 87, 012103, (2013)
[37] Lavrentovich, M. O.; Koschwanez, J. H.; Nelson, D. R., Nutrient shielding in clusters of cells, Phys. Rev. E, 87, 062703, (2013)
[38] Liggett, T. M., Interacting particle systems, (1985), Springer-Verlag New York · Zbl 0832.60094
[39] Martens, E. A.; Kostadinov, R.; Maley, C. C.; Hallatschek, O., Spatial structure increases the waiting time for cancer, New J. Phys., 13, 115014, (2011)
[40] Martin, P. C.; Siggia, E. D.; Rose, H. A., Statistical dynamics of classical systems, Phys. Rev. A, 8, 423-437, (1973)
[41] Marusyk, A.; Tabassum, D. P.; Altrock, P. M.; Almendro, V.; Michor, F.; Polyak, K., Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity, Nature, 514, 54-58, (2014)
[42] Maruyama, T., A simple proof that certain quantities are independent of the geographical structure of population, Theor. Popul. Biol., 5, 148-154, (1974)
[43] Maruyama, T., On the fixation probability of mutant genes in a subdivided population, Genet. Res., 15, 221-225, (1970)
[44] Merlo, L. M.F.; Pepper, J. W.; Reid, B. J.; Maley, C. C., Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6, 924-935, (2006)
[45] Montel, F.; Delarue, M.; Elgeti, J.; Malaquin, L.; Basan, M.; Risler, T.; Cabane, B.; Vignjevic, D.; Prost, J.; Cappello, G.; Joanny, J.-F., Stress clamp experiments on multicellular tumor spheroids, Phys. Rev. Lett., 107, 188102, (2011)
[46] Montel, F.; Delarue, M.; Elgeti, J.; Vignjevic, D.; Cappello, G.; Prost, J., Isotropic stress reduces cell proliferation in tumor spheroids, New J. Phys., 14, 055008, (2012)
[47] Moro, E., Internal fluctuations effects on Fisher waves, Phys. Rev. Lett., 87, 238303, (2001)
[48] Nguyen, B.; Upadhyaya, A.; van Oudenaarden, A.; Brenner, M. P., Elastic instability in growing yeast colonies, Biophys. J., 86, 2740-2747, (2004)
[49] Pigolotti, S.; Benzi, R.; Perlekar, P.; Jensen, M. H.; Toschi, F.; Nelson, D. R., Growth, competition and cooperation in spatial population genetics, Theor. Popul. Biol., 84, 72-86, (2013) · Zbl 1275.92089
[50] Polyanin, A. D.; Zaitsev, V. F., Handbook of exact solutions for ordinary differential equations, (2003), CRC Press Boca Raton, Florida · Zbl 1024.35001
[51] Redner, S., A guide to first-passage processes, (2001), Cambridge University Press Cambridge · Zbl 0980.60006
[52] Rubinstein, M.; Nelson, D. R., Order and deterministic chaos in hard-disk arrays, Phys. Rev. B, 26, 11, 6254-6275, (1982)
[53] Santini, M. T.; Rainaldi, G., Three-dimensional spheroid model in tumor biology, Pathobiology, 67, 148-157, (1999)
[54] Shirinifard, A.; Gens, J. S.; Zaitlen, B. L.; Poplawski, N. J.; Swat, M.; Glazier, J. A., 3D multi-cell simulation of tumor growth and angiogenesis, PLoS One, 4, e7190, (2009)
[55] Stott, E. L.; Britton, N. F.; Glazier, J. A.; Zajac, M., Stochastic simulation of benign avascular tumour growth using the Potts model, Math. Comput. Modelling, 30, 183-198, (1999)
[56] Täuber, U. C., Critical dynamics, (2014), Cambridge University Press Cambridge · Zbl 1157.82360
[57] Vogelstein, B.; Papadopoulos, N.; Velculescu, V. E.; Zhou, S.; Diaz, L. A.; Kinzler, K. W., Cancer genome landscapes, Science, 339, 1546-1558, (2013)
[58] Vulin, C.; Meglio, J.-M. D.; Lindner, A. B.; Daerr, A.; Murray, A.; Hersen, P., Growing yeast into cylindrical colonies, Biophys. J., 106, 2214-2221, (2014)
[59] Weis, S. M.; Cheresh, D. A., Tumor angiogenesis: molecular pathways and therapeutic targets, Nat. Med., 17, 1359-1370, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.