×

zbMATH — the first resource for mathematics

Evolution in range expansions with competition at rough boundaries. (English) Zbl 1416.92124
Summary: When a biological population expands into new territory, genetic drift develops an enormous influence on evolution at the propagating front. In such range expansion processes, fluctuations in allele frequencies occur through stochastic spatial wandering of both genetic lineages and the boundaries between genetically segregated sectors. Laboratory experiments on microbial range expansions have shown that this stochastic wandering, transverse to the front, is superdiffusive due to the front’s growing roughness, implying much faster loss of genetic diversity than predicted by simple flat front diffusive models. We study the evolutionary consequences of this superdiffusive wandering using two complementary numerical models of range expansions: the stepping stone model, and a new interpretation of the model of directed paths in random media, in the context of a roughening population front. Through these approaches we compute statistics for the times since common ancestry for pairs of individuals with a given spatial separation at the front, and we explore how environmental heterogeneities can locally suppress these superdiffusive fluctuations.
MSC:
92D15 Problems related to evolution
92D40 Ecology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barton, N. F.; Depaulis, F.; Etheridge, A., Theor Popul. Biol., 61, 31, (2002)
[2] Beller, D. A.; Alards, K. M.; Tesser, F.; Mosna, R. A.; Toschi, F.; Möbius, W., Europhys. Lett., 123, 58005, (2018)
[3] Derrida, B.; Dickman, R., J. Phys. A: Math. Gen., 24, (1991)
[4] Eden, M., Proc. Fourth Berkeley Symp. Math. Stat. Prob., 4, 223, (1961)
[5] Excoffier, L.; Ray, N., Trends Ecol. Evol., 23, 347, (2008)
[6] Flores, G. M.; Quastel, J.; Remenik, D., Commun. Math. Phys., 317, 363, (2013)
[7] Gralka, M.; Stiewe, F.; Farrell, F.; Möbius, W.; Waclaw, B.; Hallatschek, O., Ecol. Lett., 19, 889, (2016)
[8] Gueudré, T.; Le Doussal, P.; Bouchaud, J.-P.; Rosso, A., Phys. Rev. E, 91, 062110, (2015)
[9] Hallatschek, O.; Hersen, P.; Ramanathan, S.; Nelson, D. R., Proc. Nat. Acad. Sci., 104, 19926, (2007)
[10] Halpin-Healy, T., Phys. Rev. A, 44, R3415, (1991)
[11] Halpin-Healy, T.; Takeuchi, K. A., J. Stat. Phys., 160, 794, (2015)
[12] Halpin-Healy, T.; Zhang, Y. C., Phys. Rep., 254, 215, (1995)
[13] Hinrichsen, H.; Howard, M., Eur. Phys. J. B, 7, 635, (1999)
[14] Horowitz, J., Kardar, M., 2019. preprint, ArXiv:1901.07956.
[15] Kardar, M., Nucl. Phys. B, 290, 582, (1987)
[16] Kardar, M., Physica A, 263, 345, (1999)
[17] Kardar, M.; Parisi, G.; Zhang, Y.-C., Phys. Rev. Lett., 56, 889, (1986)
[18] Kardar, M.; Zhang, Y.-C., Phys. Rev. Lett., 58, 2087, (1987)
[19] Kim, J. M.; Moore, M. A.; Bray, A. J., Phys. Rev. A, 44, 2345, (1991)
[20] Kim, J. M.; Moore, M. A.; Bray, A. J., Phys. Rev. A, 44, R4782, (1991)
[21] Kimura, M.; Weiss, G. H., Genetics, 49, 561, (1964)
[22] Kingman, J. F., J. Appl. Prob., 19, 27, (1982)
[23] Korolev, K.; Avlund, M.; Hallatschek, O.; Nelson, D. R., Rev. Mod. Phys, 82, 1691, (2010)
[24] Krug, J.; Meakin, P., Phys. Rev. A, 40, 2064, (1989)
[25] Lavrentovich, M. O.; Korolev, K. S.; Nelson, D. R., Phys. Rev. E, 87, 012103, (2013)
[26] Lavrentovich, M. O.; Nelson, D. R., Phys. Rev. Lett., 112, 138102, (2014)
[27] Malécot, G., Theor Popul. Biol., 8, 212, (1975)
[28] Meakin, P., J. Phys. A, 20, (1987)
[29] Medina, E.; Hwa, T.; Kardar, M.; Zhang, Y.-C., Phys. Rev. A, 39, 3053, (1989)
[30] Möbius, W.; Murray, A. W.; Nelson, D. R., PLoS Comput. Biol., 11, e1004615, (2015)
[31] Nagylaki, T., Proc. Natl. Acad. Sci. U.S.A., 71, 2932, (1974)
[32] Newman, T. J.; Swift, M. R., Phys. Rev. Lett., 79, 2261, (1997)
[33] Nullmeier, J.; Hallatschek, O., Evolution, 67, 1307, (2013)
[34] Ódor, G., Rev. Mod. Phys., 76, 663, (2004)
[35] Quastel, J.; Spohn, H., J. Stat. Phys., 160, 965, (2015)
[36] Redner, S., A Guide to First-Passage Processes, (2001), Cambridge University Press · Zbl 0980.60006
[37] Saito, Y.; Müller-Krumbhaar, H., Phys. Rev. Lett., 74, 4325, (1995)
[38] Sasamoto, T.; Spohn, H., Phys. Rev. Lett., 104, 230602, (2010)
[39] Tesser, F., Ph.D. thesis, (2016), Technische Universiteit Eindhoven
[40] Wakeley, J., Coalescent Theory: an Introduction, (2009), Roberts & Co · Zbl 1366.92001
[41] Wang, P.; Robert, L.; Pelletier, J.; Dang, W. L.; Taddei, F.; Wright, A.; Jun, S., Curr. Biol., 20, 1099, (2010)
[42] Wilkins, J. F.; Wakeley, J., Genetics, 161, 873, (2002)
[43] Wilkinson-Herbots, H. M., J. Math. Biol., 37, 535, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.