×

zbMATH — the first resource for mathematics

Sensitivity-driven adaptive sparse stochastic approximations in plasma microinstability analysis. (English) Zbl 1436.65024
Summary: Quantifying uncertainty in predictive simulations for real-world problems is of paramount importance – and far from trivial, mainly due to the large number of stochastic parameters and significant computational requirements. Adaptive sparse grid approximations are an established approach to overcome these challenges. However, standard adaptivity is based on global information, thus properties such as lower intrinsic stochastic dimensionality or anisotropic coupling of the input directions, which are common in practical applications, are not fully exploited. We propose a novel structure-exploiting dimension-adaptive sparse grid approximation methodology using Sobol’ decompositions in each subspace to introduce a sensitivity scoring system to drive the adaptive process. By employing sensitivity information, we explore and exploit the anisotropic coupling of the stochastic inputs as well as the lower intrinsic stochastic dimensionality. The proposed approach is generic, i.e., it can be formulated in terms of arbitrary approximation operators and point sets. In particular, we consider sparse grid interpolation and pseudo-spectral projection constructed on (L)-Leja sequences. The power and usefulness of the proposed method is demonstrated by applying it to the analysis of gyrokinetic microinstabilities in fusion plasmas, one of the key scientific problems in plasma physics and fusion research. In this context, it is shown that a 12D parameter space can be scanned very efficiently, gaining more than an order of magnitude in computational cost over the standard adaptive approach. Moreover, it allows for the uncertainty propagation and sensitivity analysis in higher-dimensional plasma microturbulence problems, which would be almost impossible to tackle with standard screening approaches.
MSC:
65D40 High-dimensional functions; sparse grids
65C20 Probabilistic models, generic numerical methods in probability and statistics
82D10 Statistical mechanical studies of plasmas
Software:
GENE; gs2
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beer, M. A.; Cowley, S. C.; Hammett, G. W., Field-aligned coordinates for nonlinear simulations of tokamak turbulence, Phys. Plasmas, 2, 2687-2700 (1995)
[2] Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 3, 501-517 (2004) · Zbl 1061.65006
[3] Brizard, A. J.; Hahm, T. S., Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79, 421-468 (2007) · Zbl 1205.76309
[4] Bungartz, H.-J.; Griebel, M., Sparse grids, Acta Numer., 13, 147-269 (2004) · Zbl 1118.65388
[5] Conrad, P. R.; Marzouk, Y. M., Adaptive Smolyak pseudospectral approximations, SIAM J. Sci. Comput., 35, 6, A2643-A2670 (2013) · Zbl 1294.41004
[6] Constantine, P. G.; Eldred, M. S.; Phipps, E. T., Sparse pseudospectral approximation method, Comput. Methods Appl. Mech. Eng., 229-232, 1-12 (2012) · Zbl 1253.65117
[7] Dimits, A. M.; Bateman, G.; Beer, M. A.; Cohen, B. I.; Dorland, W.; Hammett, G. W.; Kim, C.; Kinsey, J. E.; Kotschenreuther, M.; Kritz, A. H.; Lao, L. L.; Mandrekas, J.; Nevins, W. M.; Parker, S. E.; Redd, A. J.; Shumaker, D. E.; Sydora, R.; Weiland, J., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7, 3, 969-983 (2000)
[8] Formaggia, L.; Guadagnini, A.; Imperiali, I.; Lever, V.; Porta, G.; Riva, M.; Scotti, A.; Tamellini, L., Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model, Comput. Geosci., 17, 1, 25-42 (2013) · Zbl 1356.86021
[9] Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E., Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX upgrade, Phys. Plasmas, 25, 5, Article 055903 pp. (2018)
[10] Gander, W., Change of basis in polynomial interpolation, Numer. Linear Algebra Appl., 12, 8, 769-778 (2005) · Zbl 1164.41302
[11] Garbet, X.; Idomura, Y.; Villard, L.; Watanabe, T. H., Topical review: gyrokinetic simulations of turbulent transport, Nucl. Fusion, 50, Article 043002 pp. (2010)
[12] Gerstner, T.; Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71, 1, 65-87 (2003) · Zbl 1030.65015
[13] Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Told, D., The global version of the gyrokinetic turbulence code gene, J. Comput. Phys., 230, 18, 7053-7071 (2011) · Zbl 1408.76592
[14] Görler, T.; White, A. E.; Told, D.; Jenko, F.; Holland, C.; Rhodes, T. L., A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence, Phys. Plasmas, 21, 12, Article 122307 pp. (2014)
[15] Griebel, M.; Schneider, M.; Zenger, C., A combination technique for the solution of sparse grid problems, (de Groen, P.; Beauwens, R., Iterative Methods in Linear Algebra (1992), IMACS, Elsevier, North Holland), 263-281 · Zbl 0785.65101
[16] Gr̈ler, T.; Tronko, N.; Hornsby, W. A.; Bottino, A.; Kleiber, R.; Norscini, C.; Grandgirard, V.; Jenko, F.; Sonnendrücker, E., Intercode comparison of gyrokinetic global electromagnetic modes, Phys. Plasmas, 23, 7, Article 072503 pp. (2016)
[17] Hegland, M., Adaptive sparse grids, (Burrage, K.; Sidje, R. B., Proc. of 10th Computational Techniques and Applications Conference. Proc. of 10th Computational Techniques and Applications Conference, CTAC-2001, vol. 44 (2003)), C335-C353 · Zbl 1078.65520
[18] Jantsch, P.; Webster, C. G.; Zhang, G., On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains, IMA J. Numer. Anal., 06 (2018), vol. 39 2, pp. 1039-1057
[19] Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient driven turbulence, Phys. Plasmas, 7, 5, 1904-1910 (2000)
[20] Krommes, J. A., The gyrokinetic description of microturbulence in magnetized plasmas, Annu. Rev. Fluid Mech., 44, 175-201 (2012) · Zbl 1354.76231
[21] Ma, X.; Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 8, 3084-3113 (2009) · Zbl 1161.65006
[22] Marzouk, Y.; Moselhy, T.; Parno, M.; Spantini, A., Sampling via Measure Transport: An Introduction, 1-41 (2016), Springer International Publishing: Springer International Publishing Cham
[23] M. P.I. Forum, MPI: A Message-Passing Interface Standard, Version 4.0 (2017), Available at:
[24] Narayan, A.; Jakeman, J. D., Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput., 36, 6, A2952-A2983 (2014) · Zbl 1316.65018
[25] Nobile, F.; Tempone, R.; Webster, C. G., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2309-2345 (2008) · Zbl 1176.65137
[26] Peherstorfer, B.; Willcox, K.; Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 3, 550-591 (2018) · Zbl 06917740
[27] Rüttgers, A.; Griebel, M., Multiscale simulation of polymeric fluids using the sparse grid combination technique, Appl. Math. Comput., 319, 425-443 (2018) · Zbl 1426.76418
[28] Schillings, C.; Schwab, C., Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Probl., 29, 6, Article 065011 pp. (2013) · Zbl 1278.65008
[29] Sobol’, I. M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 1, 271-280 (2001) · Zbl 1005.65004
[30] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf., 93, 7, 964-979 (2008)
[31] Told, D.; Jenko, F.; Görler, T.; Casson, F. J.; Fable, E., Characterizing turbulent transport in ASDEX upgrade L-mode plasmas via nonlinear gyrokinetic simulations, Phys. Plasmas, 20, 12, Article 122312 pp. (2013)
[32] Vaezi, P.; Holland, C., An improved approach to uncertainty quantification for plasma turbulence validation studies, Fusion Sci. Technol., 74, 1-2, 77-88 (2018)
[33] White, A. E.; Görler, T., Special issue on comparing gyrokinetic simulations to experiments, Plasma Phys. Control. Fusion, 59, 5, Article 050101 pp. (2017)
[34] Winokur, J.; Kim, D.; Bisetti, F.; Le Maître, O. P.; Knio, O. M., Sparse pseudo spectral projection methods with directional adaptation for uncertainty quantification, J. Sci. Comput., 68, 2, 596-623 (2016) · Zbl 1371.65015
[35] Xanthopoulos, P.; Mynick, H. E.; Helander, P.; Turkin, Y.; Plunk, G. G.; Jenko, F.; Görler, T.; Told, D.; Bird, T.; Proll, J. H.E., Controlling turbulence in present and future stellarators, Phys. Rev. Lett., 113, 15, Article 155001 pp. (2014)
[36] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 1210.65002
[37] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.