zbMATH — the first resource for mathematics

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids. (English) Zbl 1355.65127
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI
[1] M. Bader, Space-Filling Curves: An Introduction with Applications in Scientific Computing, Texts Comput. Sci. Engrg. 9, Springer, Heidelberg, 2013. · Zbl 1283.68012
[2] M. Bader, A. Breuer, O. Meister, K. Rahnema, and M. Schreiber, Parallelization and Software Concepts for Tsunami Simulation on Dynamically Adaptive Triangular Grids, , 2012; accessed 2015-06-01.
[3] M. Bader, K. Rahnema, and C. Attila Vigh, Memory-efficient Sierpinski-order traversals on dynamically adaptive, recursively structured triangular grids, in PARA ’10: Proceedings of the 10th International Conference on Applied Parallel and Scientific Computing, Vol. 2, K. Jonasson, ed., Lecture Notes in Comput. Sci. 7134, Springer, Berlin, 2012, pp. 302–311.
[4] M. Bader, S. Schraufstetter, C. A. Vigh, and J. Behrens, Memory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves, Internat. J. Comput. Sci. Engrg., 4 (2008), pp. 12–21.
[5] J. Behrens and J. Zimmermann, Parallelizing an Unstructured Grid Generator with a Space-Filling Curve Approach, in Euro-Par 2000 Parallel Processing, Springer, New York, 2000, pp. 815–823.
[6] M. J. Berger, D. L. George, R. J. LeVeque, and K. T. Mandli, The GeoClaw software for depth-averaged flows with adaptive refinement, Adv. Water Res., 34 (2011), pp. 1195–1206.
[7] M. J. Berger and R. J. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal., 35 (1998), pp. 2298–2316, . · Zbl 0921.65070
[8] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox, and S. Zhong, Scalable adaptive mantle convection simulation on petascale supercomputers, in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, IEEE Press, Piscataway, NJ, 2008, 62.
[9] C. Burstedde, L. C. Wilcox, and O. Ghattas, \textttp4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133, . · Zbl 1230.65106
[10] C. E. Castro, M. Käser, and E. F. Toro, Space-time adaptive numerical methods for geophysical applications, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), pp. 4613–4631. · Zbl 1192.86006
[11] P. Fischer, J. Lottes, D. Pointer, and A. Siegel, Petascale algorithms for reactor hydrodynamics, J. Phys. Conf. Ser., 125 (2008), 012076.
[12] A. Frank, Organisationsprinzipien zur Integration von Geometrischer Modellierung, Numerischer Simulation und Visualisierung, dissertation, Institut für Informatik, Technische Universität München, München, Germany, 2000.
[13] D. L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation, J. Comput. Phys., 227 (2008), pp. 3089–3113. · Zbl 1329.76204
[14] F. I. González, R. J. LeVeque, P. Chamberlain, B. Hirai, J. Varkovitzky, and D. L. George, Validation of the GeoClaw model, GeoClaw Tsunami Modeling Group, University of Washington, Seattle, WA, 2011.
[15] F. Günther, M. Mehl, M. Pögl, and C. Zenger, A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves, SIAM J. Sci. Comput., 28 (2006), pp. 1634–1650, . · Zbl 1162.68406
[16] D. F. Harlacher, H. Klimach, S. Roller, C. Siebert, and F. Wolf, Dynamic load balancing for unstructured meshes on space-filling curves, in Proceedings of the 26th International Parallel and Distributed Processing Symposium Workshops & Ph.D. Forum (IPDPSW), IEEE, Washington, DC, 2012, pp. 1661–1669.
[17] G. Jin and J. Mellor-Crummey, SFCGEN: A framework for efficient generation of multi-dimensional space-filling curves by recursion, ACM Trans. Math. Softw., 31 (2005), pp. 120–148. · Zbl 1073.65017
[18] S. Jin, R. R. Lewis, and D. West, A comparison of algorithms for vertex normal computation, Visual Computer, 21 (2005), pp. 71–82.
[19] W. B. March, K. Czechowski, M. Dukhan, T. Benson, D. Lee, A. J. Connolly, R. Vuduc, E. Chow, and A. G. Gray, Optimizing the computation of \(n\)-point correlations on large-scale astronomical data, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, IEEE Computer Society, Washington, DC, 2012, 13372324.
[20] A. Marochko and A. Kukanov, Composable parallelism foundations in the intel threading building blocks task scheduler, in Proceedings of ParCo 2011, Ghent, Belgium, 2011, pp. 545–554.
[21] O. Meister, K. Rahnema, and M. Bader, A software concept for cache-efficient simulation on dynamically adaptive structured triangular grids, in Applications, Tools and Techniques on the Road to Exascale Computing (ParCo 2012, Ghent, Belgium), Adv. Parallel Comput. 22, IOS Press, Amsterdam, 2012, pp. 251–260.
[22] R.-P. Mundani, Hierarchische Geometriemodelle zur Einbettung verteilter Simulationsaufgaben, Dissertation, Faculty of Informatics, Elektrotechnik und Informationstechnik, University of Stuttgart, Stuttgart, Germany, Shaker, Aachen, 2006.
[23] T. Neckel, The PDE Framework Peano: An Environment for Efficient Flow Simulations, dissertation, Institut für Informatik, Technische Universität München, München, Germany, 2009.
[24] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, Petascale direct numerical simulation of blood flow on \(200\)k cores and heterogeneous architectures, in Proceedings of the 2010 ACM/IEEE International Conference for HPC, Networking, Storage and Analysis, SC ’10, IEEE Computer Society, Washington, DC, 2010, pp. 1–11.
[25] H. Sagan, Space-Filling Curves, Universitext, Springer-Verlag, New York, 1994. · Zbl 0806.01019
[26] M. Schreiber, Cluster-Based Parallelization of Simulations on Dynamically Adaptive Grids and Dynamic Resource Management, dissertation, Institut für Informatik, Technische Universität München, München, Germany, 2014.
[27] M. Schreiber and H.-J. Bungartz, Cluster-based communication and load balancing for simulations on dynamically adaptive grids, in Proceedings of the International Conference on Computational Science (ICCS’14), Procedia Comput. Sci. 29, Elsevier, New York, 2014, pp. 2241–2253.
[28] M. Schreiber, H.-J. Bungartz, and M. Bader, Shared memory parallelization of fully-adaptive simulations using a dynamic tree-split and -join approach, in the 19th IEEE International Conference on High Performance Computing (HiPC) (Puna, India), IEEE, Washington, DC, 2012, 13485445 .
[29] M. Schreiber et al., Website and Repository with Source Code Related to this Work, , (mirror), .
[30] M. Schreiber, T. Weinzierl, and H.-J. Bungartz, Cluster optimization and parallelization of simulations with dynamically adaptive grids, in Euro-Par 2013 Parallel Processing, Springer, New York, 2013, pp. 484–496.
[31] M. Schreiber, T. Weinzierl, and H.-J. Bungartz, SFC-based communication metadata encoding for adaptive mesh, in Parallel Computing: Accelerating Computational Science and Engineering, Adv. Parallel Comput. 25, IOS Press, Amsterdam, 2013, pp. 233–242.
[32] G. Shao, X. Li, C. Ji, and T. Maeda, Focal mechanism and slip history of the 2011 mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves, Earth Planets Space, 63 (2011), pp. 559–564.
[33] H. D. Simon, Partitioning of unstructured problems for parallel processing, Comput. Syst. Engrg., 2 (1991), pp. 135–148.
[34] C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kânoğlu, and F. I. González, Standards, Criteria, and Procedures for NOAA Evaluation of Tsunami Numerical Models, NOAA Tech. Memo. OAR PMEL-135, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 2007.
[35] K. Utku and C. E. Synolakis, Long wave runup on piecewise linear topographies, J. Fluid Mech., 374 (1998), pp. 1–28. · Zbl 0965.76014
[36] C. A. Vigh, Parallel Simulation of the Shallow Water Equations on Structured Dynamically Adaptive Triangular Grids, Ph.D. thesis, Institut für Informatik, Technische Universität München, München, Germany, 2012.
[37] T. Weinzierl, A Framework for Parallel PDE Solvers on Multiscale Adaptive Cart. Grids, dissertation, Institut für Informatik, Technische Universität München, München, Germany, 2009.
[38] T. Weinzierl and M. Mehl, Peano—a traversal and storage scheme for octree-like adaptive Cartesian multiscale grids, SIAM J. Sci. Comput., 33 (2011), pp. 2732–2760, . · Zbl 1245.65169
[39] P. Wessel and W. H. F. Smith, Free software helps map and display data, Eos Trans. Amer. Geophys. Union, 72 (1991), pp. 441–446.
[40] G. Zumbusch, On the quality of space-filling curve induced partitions, ZAMM Z. Angew. Math. Mech., 81 (2000), pp. 25–28. · Zbl 1163.65341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.