×

zbMATH — the first resource for mathematics

Numerical solution of a micropolar fluid flow between two rotating coaxial disks. (English) Zbl 0825.76033
MSC:
76A05 Non-Newtonian fluids
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] von K?rm?n, T.: ?ber laminare und turbulente Reibung. Z. Angew. Math. Mech.1, 233-252 (1921). · JFM 48.0968.01
[2] Batchelor, G. K.: Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quart. J. Mech. Appl. Math.4, 29-41 (1951). · Zbl 0042.43101
[3] Stewartson, K.: On the flow between rotating coaxial disks. Proc. Camb. Phil. Soc.49, 333-341 (1953). · Zbl 0051.41904
[4] Lance, G. N., Rogers, M. H.: The axially symmetric flow of a viscous fluid between two infinite rotating disks. Proc. R. Soc. London, Ser.A 266, 109-121 (1962). · Zbl 0112.41701
[5] Holodniok, M., Kubicek, M., Hlavacek, V.: Computation of the flow between two rotating coaxial disks. J. Fluid. Mech.81, 689-699 (1977). · Zbl 0365.76032
[6] Holodniok, M., Kubicek, M., Hlavacek, V.: Computation of the flow between two rotating coaxial disks: multiplicity of steady-state solutions. J. Fluid. Mech.108, 227-240 (1981). · Zbl 0502.76041
[7] Nguyen, N. D., Ribault, J. P., Florent, P.: Multiple solutions for flow between coaxial disks. J. Fluid. Mech.68, 369-388 (1975). · Zbl 0329.76030
[8] Roberts, S. M., Shipman, J. S.: Computation of the flow between a rotating and a stationary disk. J. Fluid. Mech.73, 53-63 (1976). · Zbl 0346.76019
[9] Mellor, G. L., Chapple, P. J., Stokes, V. K.: On the flow between a rotating and a stationary disk. J. Fluid. Mech.31, 95-112 (1968). · Zbl 0157.57302
[10] Kreiss, H. O., Parter, S. V.: On the swirling flow between rotating coaxial disks: existence and nonuniqueness. Commun. Pure Appl. Math.36, 55-84 (1983). · Zbl 0498.34012
[11] Parter, S. V.: On the swirling flow between rotating coaxial disks: a survey. In: Theory and applications of singular perturbations (Eckhaus, W., de Jager, E. M., eds.), pp. 258-280, Lecture Notes in Mathematics, No. 942. Springer 1982.
[12] Zandbergen, P. J., Dijkstra, D.: Von K?rm?n swirling flows. Ann. Rev. Fluid. Mech.19, 465-491 (1987). · Zbl 0629.76026
[13] Rathna, S. L.: Flow of a particular class of non-Newtonian fluids near a rotating disc. Z. Angew. Math. Mech.42, 231-237 (1962). · Zbl 0109.18002
[14] Williams, E. W.: Non-Newtonian flow caused by an infinite rotating disc. J. Non-Newt. Fluid Mech.1, 51-69 (1976). · Zbl 0362.76014
[15] Griffiths, D. F., Jones, D. T., Walters, K.: A flow reversal due to edge effects. J. Fluid Mech.36, 161-175 (1969). · Zbl 0167.25602
[16] Bhatnagar, R. K., Perera, M. G. N.: Numerical solutions for flow of an Oldroyd fluid confined between coaxial rotating disks. J. Rheol.26, 19-41 (1982). · Zbl 0481.76002
[17] Phan-Thien, N.: Coaxial-disk flow and flow about a rotating disk of a Maxwellian fluid. J. Fluid Mech.128, 427-442 (1983). · Zbl 0516.76010
[18] Ji, Z., Rajagopal, K. R., Szeri, A. Z.: Multiplicity of solutions in von K?rm?n flows of viscoelastic fluids. J. Non-Newt. Fluid Mech.36, 1-25 (1990). · Zbl 0708.76009
[19] Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1-18 (1966). · Zbl 0145.21302
[20] Ariman, T., Turk, M. A., Sylvester, N. D.: On steady and pulsatile flow of blood. J. Appl. Mech.41, 1-7 (1974). · Zbl 0273.76003
[21] Hogen, H. A., Henriksen, M.: An evaluation of a micropolar model for blood flow through an idealized stenosis. J. Biomechanics22, 211-218 (1989).
[22] Lee, J. D., Eringen, A. C.: Wave propagation in nematic liquid crystals. J. Chem. Phys.54, 5027-5034 (1971).
[23] Guram, G. S., Anwar, M.: Steady flow of a micropolar fluid due to a rotating disk. J. Engng. Math.13, 223-234 (1979). · Zbl 0398.76030
[24] Ramachandra Rao, A., Kasiviswanathan, S. R.: A class of exact solutions for the flow of a micropolar fluid. Int. J. Engng. Sci.25, 443-453 (1987). · Zbl 0609.76006
[25] Agarwal, R. S., Dhanapal, C.: Numerical solution of micropolar fluid flow between a rotating and a porous stationary disc. Int. J. Engng. Sci.25, 1403-1417 (1987). · Zbl 0626.76005
[26] Agarwal, R. S., Dhanapal, C.: Heat transfer in micropolar fluid flow between two coaxial discsone rotating and another at rest. Int. J. Engng. Sci.27, 181-186 (1989).
[27] Roberts, S. M., Shipman, J. S.: Two point boundary value problems: shooting methods (Bellman, R., ed.). Elsevier 1971. · Zbl 0202.15905
[28] Conte, S. D.: The numerical solution of linear boundary value problems. SIAM Review8, 309-321 (1966). · Zbl 0168.14101
[29] Scott, M. R., Watts, H. A.: Computational solution of linear two point boundary value problems via orthonormalization. SIAM J. Numer. Anal.14, 40-70 (1977). · Zbl 0357.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.