×

zbMATH — the first resource for mathematics

Endogenous formation of limit order books: dynamics between trades. (English) Zbl 1388.91144

MSC:
91G80 Financial applications of other theories
91A13 Games with infinitely many players (MSC2010)
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Aliprantis and K. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, Springer Science & Business Media, New York, 2006. · Zbl 1156.46001
[2] R. Almgren, Optimal execution with nonlinear impact functions and trading-enhanced risk, Appl. Math. Finance, 10 (2003), pp. 1–18. · Zbl 1064.91058
[3] R. Aumann, Markets with a continuum of traders, Econometrica, 32 (1964), pp. 39–50. · Zbl 0137.39003
[4] M. Avellaneda and S. Stoikov, High-frequency trading in a limit order book, Quant. Finance, 8 (2008), pp. 217–224. · Zbl 1152.91024
[5] E. Bayraktar and M. Ludkovski, Optimal trade execution in illiquid markets, Math. Finance, 21 (2011), pp. 681–701. · Zbl 1233.91335
[6] T. R. Bielecki, S. Crépey, M. Jeanblanc, and M. Rutkowski, Arbitrage pricing of defaultable game options with applications to convertible bonds, Quant. Finance, 8 (2008), pp. 795–810. · Zbl 1154.91426
[7] G. Carmona, Existence and Stability of Nash Equilibrium, World Scientific, River Edge, NJ, 2013. · Zbl 1264.91005
[8] R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM J. Control Optim., 51 (2013), pp. 2705–2734. · Zbl 1275.93065
[9] R. Carmona and K. Webster, A Belief-Driven Order Book Model, Working paper, , 2012.
[10] A. Cartea, R.-F. Donnelly, and S. Jaimungal, Algorithmic trading with model uncertainty, SIAM J. Financial Math., 8 (2017), pp. 635–671. · Zbl 1407.91287
[11] A. Cartea, R.-F. Donnelly, and S. Jaimungal, Enhancing Trading Strategies with Order Book Signals, , 2015. · Zbl 1407.91287
[12] A. Cartea and A. Jaimungal, Optimal execution with limit and market orders, Quant. Finance, 15 (2015), pp. 1279–1291. · Zbl 1406.91403
[13] J. Chassagneux, R. Elie, and I. Kharroubi, A note on existence and uniqueness for solutions of multidimensional reflected BSDEs, Electron. Commun. Probab., 16 (2011), pp. 120–128. · Zbl 1232.93095
[14] R. Cont, A. Kukanov, and S. Stoikov, The price impact of order book events, J. Financial Econometrics, 12 (2014), pp. 47–88.
[15] R. Cont, S. Stoikov, and R. Talreja, A stochastic model for order book dynamics, Oper. Res., 58 (2010), pp. 549–563. · Zbl 1232.91719
[16] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004. · Zbl 1052.91043
[17] B. J. Cvitanić and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Ann. Prob., 24 (1996), pp. 2024–2056. · Zbl 0876.60031
[18] S. Du and H. Zhu, Welfare and Optimal Trading Frequency in Dynamic Double Auctions, NBER Working Paper 20588, 2014.
[19] E. B. Dynkin, Game variant of a problem on optimal stopping, Soviet Math. Dokl., 10 (1969), pp. 270–274. · Zbl 0186.25304
[20] R. Elie and I. Kharroubi, BSDE representations for optimal switching problems with controlled volatility, Stoch. Dyn., 14 (2014). · Zbl 1291.93326
[21] T. Foucault, Order flow composition and trading costs in a dynamic limit order market, J. Financial Markets, 2 (1999), pp. 99–134.
[22] R. Gayduk and S. Nadtochiy, Control-Stopping Games for Market Microstructure and Beyond, preprint, , 2017.
[23] R. Gayduk and S. Nadtochiy, Liquidity effects of trading frequency, Math. Finance, (2017), . · Zbl 1388.91144
[24] A. Gegout-Petit and E. Pardoux, Equations différentielles stochastiques rétrogrades réfléchies dans un convexe, Stoch. Stoch. Reports, 57 (1996), pp. 111–128. · Zbl 0891.60050
[25] R. L. Goettler, C. A. Parlour, and U. Rajan, Equilibrium in a dynamic limit order market, J. Finance, 60 (2005), pp. 2149–2192.
[26] A. Granas and J. Dugundji, Fixed Point Theory, Springer Science & Business Media, New York, 2013. · Zbl 1025.47002
[27] O. Guéant, Optimal Market Making, , 2016.
[28] O. Guéant and C.-A. Lehalle, General intensity shapes in optimal liquidation, Math. Finance, 3 (2015), pp. 457–495. · Zbl 1331.91165
[29] F. Guilbaud and H. Pham, Optimal high-frequency trading with limit and market orders, Quant. Finance, 13 (2013), pp. 79–94. · Zbl 1280.91148
[30] J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003. · Zbl 1018.60002
[31] S. Jaimungal and M. Nourian, Mean-Field Game Strategies for a Major-Minor Agent Optimal Execution Problem, Working paper, , 2017. · Zbl 1410.91498
[32] O. Kallenberg, Foundations of Modern Probability, Springer Science & Business Media, New York, 2006. · Zbl 0892.60001
[33] I. Karatzas, Q. Li, and R. J. Elliott, BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping, in Stochastic Processes, Finance and Control: A Festschrift in Honor of Robert J. Elliott, World Scientific, 2011, pp. 105–153. · Zbl 1310.91026
[34] I. Karatzas and W. Suderth, Stochastic games of control and stopping for a linear diffusion, in Random Walk, Sequential Analysis and Related Topics: A Festschrift in Honor of Y. S. Chow, World Scientific, River Edge, NJ, 2006, pp. 100–117.
[35] N. E. Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M. C. Quenez, Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, Ann. Probab., 25 (1997), pp. 702–737. · Zbl 0899.60047
[36] Y. Kifer, Optimal stopping in games with continuous time, Theory Probab. Appl., 16 (1971), pp. 545–550. · Zbl 0251.90066
[37] A. Lachapelle, J.-M. Lasry, C.-A. Lehalle, and P.-L. Lions, Efficiency of the Price Formation Process in Presence of High Frequency Participants: A Mean Field Game Analysis, preprint, , 2013. · Zbl 1404.91245
[38] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), pp. 229–260. · Zbl 1156.91321
[39] A. Lipton, U. Pesavento, and M. G. Sotiropoulos, Trade Arrival Dynamics and Quote Imbalance in a Limit Order Book, , 2013.
[40] C. Lorenz and A. Schied, Drift dependence of optimal trade execution strategies under transient price impact, Finance Stochastics, 17 (2013), pp. 743–770. · Zbl 1278.91065
[41] E. Ok, Real Analysis with Economic Applications, Princeton University Press, Princeton, NJ, 2007. · Zbl 1119.26001
[42] C. A. Parlour, Price dynamics in limit order markets, Rev. Financial Stud., 11 (1998), pp. 789–816.
[43] S. Predoiu, G. Shaikhet, and S. Shreve, Optimal execution of a general one-sided limit-order book, SIAM J. Financial Math., 2 (2011), pp. 183–212. · Zbl 1222.91062
[44] I. Rosu, A dynamic model of the limit order book, Rev. Financial Stud., 22 (2009), pp. 4601–4641.
[45] M. Saglam and S. Stoikov, Option market making under inventory risk, Rev. Derivatives Res., 12 (2009), pp. 55–79. · Zbl 1168.91401
[46] A. Schied and T. Zhang, A state-constrained differential game arising in optimal portfolio liquidation, Math. Finance, 27 (2017), pp. 779–802. · Zbl 1397.91561
[47] D. Schmeidler, Equilibrium points of nonatomic games, J. Stat. Phys., 7 (1973), pp. 295–300. · Zbl 1255.91031
[48] S. Stoikov and R. Waeber, Optimal Asset Liquidation using Limit Order Book Information, working paper, , 2012.
[49] W. Zhen and X. Hua, Multi-dimensional reflected backward stochastic differential equations and the comparison theorem, Acta Math. Sci., 30 (2010), pp. 1819–1836. · Zbl 1240.60166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.