zbMATH — the first resource for mathematics

Simulation of implied volatility surfaces via tangent Lévy models. (English) Zbl 1410.91478

91G60 Numerical methods (including Monte Carlo methods)
91G20 Derivative securities (option pricing, hedging, etc.)
91G70 Statistical methods; risk measures
91G10 Portfolio theory
65C05 Monte Carlo methods
60G51 Processes with independent increments; Lévy processes
Full Text: DOI
[1] Y. Aït-Sahalia and A. Lo, Nonparametric estimation of state-price densities implicit in financial asset prices, J. Finance, 53 (1997), pp. 499–547.
[2] R. Carmona and S. Nadtochiy, Local volatility dynamic models, Finance Stoch., 13 (2009), pp. 1–48. · Zbl 1199.91202
[3] R. Carmona and S. Nadtochiy, Tangent models as a mathematical framework for dynamic calibration, Int. J. Theoret. Appl. Finance, 14 (2011), pp. 107–135. · Zbl 1208.91169
[4] R. Carmona and S. Nadtochiy, Tangent Lévy market models, Finance Stoch., 16 (2012), pp. 63–104. · Zbl 1259.91047
[5] P. Carr and D. Madan, Option valuation using the fast Fourier transform, Journal of Computational Finance, 2 (1999), pp. 61–73.
[6] P. Carr and S. Nadtochiy, Local variance gamma and explicit calibration to option prices, Math. Finance, (2014), . · Zbl 1422.91685
[7] R. Cont and J. da Fonseca, Dynamics of implied volatility surfaces, Quant. Finance, 2 (2002), pp. 45–60. · Zbl 1405.91603
[8] R. Cont, J. da Fonseca, and V. Durrleman, Stochastic models of implied volatility surfaces, Econom. Notes, 31 (2002), pp. 361–377.
[9] L. Cousot, Conditions on option prices for absence of arbitrage and exact calibration, J. Banking & Finance, 31 (2007), pp. 3377–3397.
[10] E. Derman and I. Kani, Stochastic implied trees: Arbitrage pricing with stochastic term and strike structure of volatility, Int. J. Theoret. Appl. Finance, 1 (1998), pp. 61–110. · Zbl 0908.90009
[11] D. Filipovic, L. P. Hughston, and A. Macrina, Conditional density models for asset pricing, Int. J. Theoret. Appl. Finance, 15 (2012), pp. 1–24. · Zbl 1244.91090
[12] P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward, Managing smile risk, Wilmott Mag., (2002), pp. 84–108.
[13] D. Heath, R. Jarrow, and A. Morton, Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation, Econometrica, (1992), pp. 77–105. · Zbl 0751.90009
[14] J. Kallsen and P. Krühner, On a Heath-Jarrow-Morton approach for stock options, Finance Stoch., 19 (2015), pp. 583–615. · Zbl 1390.91302
[15] S. Karlsson, Consistent Dynamic Equity Market Code-Books from a Practical Point of View, Ph.D. thesis, Department of Mathematics, University of Vienna, Vienna, Austria, 2011.
[16] S. Kou, A jump-diffusion model for option pricing, Management Sci., 48 (2002), pp. 1086–1101. · Zbl 1216.91039
[17] H. Kuo, Gaussian Measures in Banach Spaces, Springer-Verlag, Berlin, 1975. · Zbl 0306.28010
[18] E. Leclercq, Three Essays on Asset Pricing, Ph.D. thesis, Swiss Finance Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2014.
[19] R. Lee, Implied Volatility: Statics, Dynamics, and Probabilistic Interpretation, in Recent Advances in Applied Probability, Springer, New York, 2005, pp. 241–268. · Zbl 1067.60054
[20] A. Lewis, A Simple Option Formula for General Jump-Diffusion and Other Exponential Lévy Processes, manuscript, , 2001.
[21] D. Luenberger, Investment Science, Oxford University Press, Oxford, UK, 1997.
[22] R. Rebonato, Volatility and Correlation: The Perfect Hedger and the Fox, John Wiley & Sons, New York, 2004.
[23] A. Richter and J. Teichmann, Discrete Time Term Structure Theory and Consistent Recalibration Models, preprint, , 2014. · Zbl 1407.91256
[24] P. Schönbucher, A market model for stochastic implied volatility, Philos. Trans. Roy. Soc. London Ser. A, 357 (1999), pp. 2071–2092. · Zbl 0963.91046
[25] P. Schönbucher, Portfolio Losses and the Term Structure of Loss Transition Rates: A New Methodology for the Pricing of Portfolio Credit Derivatives, Technical report, ETH Zürich, Zurich, Switzerland, 2005.
[26] M. Schweizer and J. Wissel, Arbitrage-free market models for option prices: The multi-strike case, Finance Stoch., 12 (2008), pp. 469–505. · Zbl 1199.91218
[27] M. Schweizer and J. Wissel, Term structures of implied volatilities: Absence of arbitrage and existence results, Math. Finance, 18 (2008), pp. 77–114. · Zbl 1138.91481
[28] G. West, Calibration of the SABR model in illiquid markets, Appl. Math. Finance, 12 (2005), pp. 371–385. · Zbl 1134.91469
[29] J. Zhao, Parametric Arbitrage-Free Models for Implied Smile Dynamics, Master’s thesis, Mathematical Institute, University of Oxford, Oxford, UK, 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.