zbMATH — the first resource for mathematics

The canonical form of the Rabi Hamiltonian. (English) Zbl 0862.34061
Summary: The Rabi Hamiltonian, describing the coupling of a two-level system to a single quantized boson mode, is studied in the Bargmann-Fock representation. The corresponding system of differential equations is transformed into a canonical form in which all regular singularities between zero and infinity have been removed. The canonical or Birkhoff-transformed equations give rise to a two-dimensional eigenvalue problem, involving the energy and a transformational parameter which affects the coupling strength. The known isolated exact solutions of the Rabi Hamiltonian are found to correspond to the uncoupled form of the canonical system.

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
Full Text: DOI arXiv
[1] DOI: 10.1016/S0065-3276(08)60114-8 · doi:10.1016/S0065-3276(08)60114-8
[2] DOI: 10.1088/0022-3719/12/9/010 · doi:10.1088/0022-3719/12/9/010
[3] DOI: 10.1063/1.526703 · Zbl 0582.47002 · doi:10.1063/1.526703
[4] DOI: 10.1063/1.526703 · Zbl 0582.47002 · doi:10.1063/1.526703
[5] DOI: 10.1088/0305-4470/20/18/033 · doi:10.1088/0305-4470/20/18/033
[6] DOI: 10.1007/BF01337923 · doi:10.1007/BF01337923
[7] DOI: 10.1103/RevModPhys.34.829 · Zbl 0119.43705 · doi:10.1103/RevModPhys.34.829
[8] DOI: 10.1103/RevModPhys.34.829 · Zbl 0119.43705 · doi:10.1103/RevModPhys.34.829
[9] DOI: 10.1090/S0002-9947-1913-1500958-3 · doi:10.1090/S0002-9947-1913-1500958-3
[10] DOI: 10.1090/S0002-9947-1913-1500958-3 · doi:10.1090/S0002-9947-1913-1500958-3
[11] DOI: 10.1016/0003-4916(67)90234-5 · doi:10.1016/0003-4916(67)90234-5
[12] DOI: 10.1063/1.1701181 · doi:10.1063/1.1701181
[13] DOI: 10.1080/00268977800100111 · doi:10.1080/00268977800100111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.