Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D.; Schnetter, Erik; Müller, Ewald Formation of supermassive black holes through fragmentation of torodial supermassive stars. (English) Zbl 1228.83078 Phys. Rev. Lett. 96, No. 16, Article ID 161101, 4 p. (2006). Summary: We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity. Cited in 2 Documents MSC: 83C57 Black holes 83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.) PDF BibTeX XML Cite \textit{B. Zink} et al., Phys. Rev. Lett. 96, No. 16, Article ID 161101, 4 p. (2006; Zbl 1228.83078) Full Text: DOI References: [1] DOI: 10.1086/147938 · Zbl 0151.47102 · doi:10.1086/147938 [2] DOI: 10.1086/148594 · doi:10.1086/148594 [3] DOI: 10.1143/PTP.65.1876 · doi:10.1143/PTP.65.1876 [4] DOI: 10.1103/PhysRevLett.55.891 · doi:10.1103/PhysRevLett.55.891 [5] DOI: 10.1143/PTP.104.325 · doi:10.1143/PTP.104.325 [6] DOI: 10.1086/341516 · doi:10.1086/341516 [7] DOI: 10.1103/PhysRevD.67.024033 · doi:10.1103/PhysRevD.67.024033 [8] DOI: 10.1086/377435 · doi:10.1086/377435 [9] DOI: 10.1103/PhysRevD.70.084005 · doi:10.1103/PhysRevD.70.084005 [10] DOI: 10.1103/PhysRevD.61.044012 · doi:10.1103/PhysRevD.61.044012 [11] DOI: 10.1103/PhysRevD.69.104016 · doi:10.1103/PhysRevD.69.104016 [12] DOI: 10.1103/PhysRevD.71.024035 · doi:10.1103/PhysRevD.71.024035 [13] DOI: 10.1103/PhysRevLett.94.131101 · doi:10.1103/PhysRevLett.94.131101 [14] DOI: 10.1086/164248 · doi:10.1086/164248 [15] DOI: 10.1086/169205 · doi:10.1086/169205 [16] I. Bonnell, Mon. Not. R. Astron. Soc. 271 pp 999– (1994) ISSN: http://id.crossref.org/issn/0035-8711 [17] DOI: 10.1086/176852 · doi:10.1086/176852 [18] DOI: 10.1111/j.1365-2966.2004.08316.x · doi:10.1111/j.1365-2966.2004.08316.x [19] I. Bonnell, Mon. Not. R. Astron. Soc. 273 pp L12– (1995) ISSN: http://id.crossref.org/issn/0035-8711 [20] DOI: 10.1086/345288 · doi:10.1086/345288 [21] DOI: 10.1103/PhysRevD.71.024014 · doi:10.1103/PhysRevD.71.024014 [22] DOI: 10.1086/308006 · doi:10.1086/308006 [23] DOI: 10.1086/339268 · doi:10.1086/339268 [24] DOI: 10.1086/151951 · doi:10.1086/151951 [25] DOI: 10.1086/318662 · doi:10.1086/318662 [26] DOI: 10.1088/0264-9381/18/19/301 · Zbl 0992.83051 · doi:10.1088/0264-9381/18/19/301 [27] DOI: 10.1086/424700 · doi:10.1086/424700 [28] J. Tassoul, in: Theory of Rotating Stars (1978) [29] DOI: 10.1086/319634 · doi:10.1086/319634 [30] DOI: 10.1046/j.1365-8711.2002.05724.x · doi:10.1046/j.1365-8711.2002.05724.x [31] DOI: 10.1086/377334 · doi:10.1086/377334 [32] DOI: 10.1046/j.1365-8711.2003.06699.x · doi:10.1046/j.1365-8711.2003.06699.x [33] DOI: 10.1103/PhysRevLett.75.600 · doi:10.1103/PhysRevLett.75.600 [34] T. Nakamura, Prog. Theor. Phys. Suppl. 90 pp 1– (1987) ISSN: http://id.crossref.org/issn/0375-9687 · doi:10.1143/PTPS.90.1 [35] DOI: 10.1103/PhysRevD.52.5428 · Zbl 1250.83027 · doi:10.1103/PhysRevD.52.5428 [36] DOI: 10.1103/PhysRevD.59.024007 · Zbl 1250.83004 · doi:10.1103/PhysRevD.59.024007 [37] DOI: 10.1088/0264-9381/21/6/014 · Zbl 1047.83002 · doi:10.1088/0264-9381/21/6/014 [38] L. Baiotti, Mem. Soc. Astron. Ital. 1 pp 210– (2003) ISSN: http://id.crossref.org/issn/0037-8720 [39] DOI: 10.1086/175605 · doi:10.1086/175605 [40] DOI: 10.1103/PhysRevD.62.064019 · doi:10.1103/PhysRevD.62.064019 [41] DOI: 10.1086/342238 · doi:10.1086/342238 [42] DOI: 10.1088/0264-9381/21/2/026 · Zbl 1045.83006 · doi:10.1088/0264-9381/21/2/026 [43] DOI: 10.1103/PhysRevD.70.104018 · doi:10.1103/PhysRevD.70.104018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.