×

A general finite volume based numerical algorithm for hydrocarbon reservoir simulation using blackoil model. (English) Zbl 1356.76191


MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1137/S1064827595289303 · Zbl 0959.76039 · doi:10.1137/S1064827595289303
[2] DOI: 10.1137/S0036142999304263 · Zbl 0984.76042 · doi:10.1137/S0036142999304263
[3] Chen, Z. and Zhang, Y. (2009), ”Well flow models for various numerical methods”, International Journal of Numerical Analysis & Modeling, Vol. 6 No. 3, pp. 375-388. · Zbl 1158.76393
[4] DOI: 10.2118/50990-PA · doi:10.2118/50990-PA
[5] DOI: 10.1023/A:1021243231313 · Zbl 1036.76034 · doi:10.1023/A:1021243231313
[6] DOI: 10.1016/j.jcp.2008.05.028 · Zbl 1231.76178 · doi:10.1016/j.jcp.2008.05.028
[7] DOI: 10.1023/A:1011510505406 · Zbl 0945.76049 · doi:10.1023/A:1011510505406
[8] Eymard, R. , Gallouet, T. and Herbin, R. (2000), ”Finite volume methods”, in Ciarlet, P.G. and Lions, J.L. (Eds), Handbook of Numerical Analysis, Vol. 7, pp. 713-1018. · doi:10.1016/S1570-8659(00)07005-8
[9] Greenshields, C.J. , Weller, H.G. , Gasparini, L. and Reese, J.M. (2010), ”Implementation of semidiscrete, non-staggered central schemes in a collocated, polyhedral, finite volume framework, for high-speed viscous flows”, International Journal for Numerical Methods in Fluids, Vol. 63 No. 1, pp. 1-21. · Zbl 1425.76163
[10] DOI: 10.1007/s10596-007-9069-3 · Zbl 1259.76049 · doi:10.1007/s10596-007-9069-3
[11] DOI: 10.1016/j.advwatres.2003.12.003 · doi:10.1016/j.advwatres.2003.12.003
[12] DOI: 10.2118/9723-PA · doi:10.2118/9723-PA
[13] DOI: 10.1016/S0045-7825(01)00420-0 · Zbl 1138.76387 · doi:10.1016/S0045-7825(01)00420-0
[14] DOI: 10.1002/nag.174 · Zbl 1016.74023 · doi:10.1002/nag.174
[15] DOI: 10.2118/79535-PA · doi:10.2118/79535-PA
[16] Quandalle, P. (1983), ”Eighth SPE comparative solution project: gridding techniques in reservoir simulation”, Journal of Petroleum Technology, Vol. 7 No. 1, pp. 343-357.
[17] DOI: 10.1016/j.cam.2014.01.016 · Zbl 1293.76096 · doi:10.1016/j.cam.2014.01.016
[18] Thomas, L. , Lumpkin, W. and Reheis, G. (1976), ”Reservoir simulation of variable bubble-point problems”, Old SPE Journal, Vol. 16 No. 1, pp. 10-16. · doi:10.2118/5107-PA
[19] DOI: 10.1007/s10596-011-9227-5 · Zbl 1348.76101 · doi:10.1007/s10596-011-9227-5
[20] DOI: 10.1137/0149044 · Zbl 0669.76125 · doi:10.1137/0149044
[21] Wheeler, M.F. , Wheeler, j.A. and Peszynska, M. (2000), ”A distributed computing portal for coupling multi-physics and multiple domains in porous media”, Computational Methods in Water Resources, Vol. 12, pp. 167-174.
[22] DOI: 10.1023/A:1022431729275 · Zbl 1094.76548 · doi:10.1023/A:1022431729275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.