×

zbMATH — the first resource for mathematics

Asymptotics for optimizers of the fractional Hardy-Sobolev inequality. (English) Zbl 1430.35006

MSC:
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26A33 Fractional derivatives and integrals
26D15 Inequalities for sums, series and integrals
35A15 Variational methods applied to PDEs
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, F. J.; Lieb, E. H., Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2, 683-773, (1989) · Zbl 0688.46014
[2] Brasco, L.; Lingren, E., Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case, Adv. Math., 304, 300-354, (2017) · Zbl 1364.35055
[3] Brasco, L.; Lingren, E.; Parini, E., The fractional Cheeger problem, Interfaces Free Bound., 16, 419-458, (2014) · Zbl 1301.49115
[4] Brasco, L.; Mosconi, S. J. N.; Squassina, M., Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations, 55, 32, (2016) · Zbl 1350.46024
[5] Brasco, L.; Parini, E., The second eigenvalue of the fractional \(p\)-Laplacian, Adv. Calc. Var., 9, 323-355, (2016) · Zbl 1349.35263
[6] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477, (1983) · Zbl 0541.35029
[7] Candito, P.; Marano, Salvatore A.; Perera, K., On a class of critical \((p, q)\)-Laplacian problems, NoDEA Nonlinear Differential Equations Appl., 22, 1959-1972, (2015) · Zbl 1328.35053
[8] Drábek, P.; Huang, Y. X., Multiplicity of positive solutions for some quasilinear elliptic equation in \(\mathbb{R}^N\) with critical Sobolev exponent, J. Differential Equations, 140, 106-132, (1997) · Zbl 0902.35035
[9] Dyda, B., A fractional order Hardy inequality, Illinois J. Math., 48, 575-588, (2004) · Zbl 1068.26014
[10] Frank, R. L.; Seiringer, R., Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255, 3407-3430, (2008) · Zbl 1189.26031
[11] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 21, 5703-5743, (2000) · Zbl 0956.35056
[12] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Some simple inequalities satisfied by convex functions, Messenger Math., 58, 145-152, (1929) · JFM 55.0740.04
[13] Iannizzotto, A.; Mosconi, S. J. N.; Squassina, M., Global Hölder regularity for the fractional \(p\)-Laplacian, Rev. Mat. Iberoamericana, 32, 1353-1392, (2016) · Zbl 1433.35447
[14] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118, 349-374, (1983) · Zbl 0527.42011
[15] Lieb, E. H.; Loss, M., Analysis, 14, (2001), American Mathematical Society: American Mathematical Society, Providence, Rhode Island · Zbl 0966.26002
[16] P. Lindqvist, Notes on the\(p\)-Laplace equation, Report. University of Jyvaskyla Department of Mathematics and Statistics, Vol. 102 (University of Jyvaskyla, Jyvaskyla, 2006).
[17] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109-145, (1984) · Zbl 0541.49009
[18] Lions, P. L., The concentration-compactness principle in the calculus of variations. The limit case, Part I, Rev. Mat. Iberoamericana, 1, 1, 145-201, (1985) · Zbl 0704.49005
[19] Lions, P. L., The concentration-compactness principle in the calculus of variations. The limit case, Part II, Rev. Mat. Iberoamericana, 1, 2, 45-121, (1985) · Zbl 0704.49006
[20] Maz’ya, V., Sobolev Spaces, with Applications to Elliptic Partial Differential Equations, 342, (2011), Springer-Verlag: Springer-Verlag, Berlin, Heidelberg
[21] Mironescu, P.; Sickel, W., A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26, 291-298, (2015) · Zbl 1341.46024
[22] Mosconi, S. J. N.; Perera, K.; Squassina, M.; Yang, Y., The Brezis-Nirenberg problem for the fractional \(p\)-Laplacian, Calc. Var. Partial Differential Equations, 55, 105, (2016) · Zbl 1361.35198
[23] Mosconi, S. J. N.; Squassina, M., Nonlocal problems at nearly critical growth, Nonlinear Anal., 136, 84-101, (2016) · Zbl 1337.35053
[24] Palatucci, G.; Pisante, A., Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50, 799-829, (2014) · Zbl 1296.35064
[25] Triebel, H., Theory of Function Spaces I, 78, (1983), Birkhäuser Verlag: Birkhäuser Verlag, Basel
[26] Yang, J., Fractional Sobolev-Hardy inequality in \(\mathbb{R}^N\), Nonlinear Anal., 119, 179-185, (2015) · Zbl 1328.35288
[27] Yang, Z.; Yin, H., Multiplicity of positive solutions to a \(p - q\)-Laplacian equation involving critical nonlinearity, Nonlinear Anal., 75, 3021-3035, (2012) · Zbl 1235.35123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.