zbMATH — the first resource for mathematics

The abstract Lewy-Stampacchia inequality and applications. (English. French summary) Zbl 1318.49016
The Lewy-Stampacchia inequality is a basic tool in the study of the solutions for the obstacle problem. The authors provide an abstract version of it in the setting of topological vector lattices using essentially the submodularity property of the functional. They show how the classical case can be recovered and give applications to fractional Laplacian, double obstacle problem and metric measure structures.

49J40 Variational inequalities
35J86 Unilateral problems for linear elliptic equations and variational inequalities with linear elliptic operators
35J87 Unilateral problems for nonlinear elliptic equations and variational inequalities with nonlinear elliptic operators
Full Text: DOI arXiv
[1] Ambrosio, L.; Gigli, N., A User’s guide to optimal transport, (Modelling and Optimisation of Flows on Networks, Lect. Notes Math., (2013), Springer Berlin, Heidelberg), 1-155
[2] Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure, Amer. Math. Soc., (2012), in press
[3] Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 969-996, (2013) · Zbl 1287.46027
[4] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 289-391, (2014) · Zbl 1312.53056
[5] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490, (2014) · Zbl 1304.35310
[6] Ambrosio, L.; Mondino, A.; Savaré, G., On the Bakry-émery condition, the gradient estimates and the local-to-global property of \(\mathit{RCD}^\ast(K, N)\) metric measure spaces, (2013), preprint
[7] Bacher, K.; Sturm, K.-T., Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259, 28-56, (2010) · Zbl 1196.53027
[8] Björn, A.; Björn, J., Nonlinear potential theory on metric spaces, EMS Tracts Math., vol. 17, (2011), European Mathematical Society (EMS) Zürich · Zbl 1231.31001
[9] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573, (2012) · Zbl 1252.46023
[10] Erbar, M.; Kuwada, K.; Sturm, K.-T., On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, (2013), preprint
[11] Farnana, Z., The double obstacle problem on metric spaces, Ann. Acad. Sci. Fenn., Math., 34, 261-277, (2009) · Zbl 1166.49008
[12] Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc., 236, 1113, (2015) · Zbl 1325.53054
[13] Gigli, N., The splitting theorem in non-smooth context, (2013), preprint
[14] Gigli, N.; Mondino, A., A PDE approach to nonlinear potential theory in metric measure spaces, J. Math. Pures Appl., 9, 100, 505-534, (2013) · Zbl 1283.31002
[15] Gigli, N.; Mosconi, S., The abstract lewy-Stampacchia inequality and applications, (2014), preprint · Zbl 1318.49016
[16] Heinonen, J., Nonsmooth calculus, Bull. Am. Math. Soc. (N.S.), 44, 163-232, (2007) · Zbl 1124.28003
[17] Hua, B.; Kell, M.; Xia, C., Harmonic functions on metric measure spaces, (2013), preprint
[18] Jiang, R., Lipschitz continuity of solutions of Poisson equations in metric measure spaces, Potential Anal., 37, 281-301, (2012) · Zbl 1252.31007
[19] Jiang, R., Cheeger-harmonic functions in metric measure spaces revisited, (2013), preprint
[20] Kell, M., A note on Lipschitz continuity of solutions of Poisson equations in metric measure spaces, (2013), preprint
[21] Lewy, H.; Stampacchia, G., On the smoothness of superharmonics which solve a minimum problem, J. Anal. Math., 23, 227-236, (1970) · Zbl 0206.40702
[22] Lott, J.; Villani, C., Weak curvature conditions and functional inequalities, J. Funct. Anal., 245, 311-333, (2007) · Zbl 1119.53028
[23] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. (2), 169, 903-991, (2009) · Zbl 1178.53038
[24] Ma, Z. M.; Röckner, M., Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, (1992), Springer-Verlag Berlin
[25] Mokrane, A.; Murat, F., The lewy-Stampacchia inequality for bilateral problems, Ric. Mat., 53, 139-182, (2004), (2005) · Zbl 1121.35066
[26] Peressini, A. L., Ordered topological vector spaces, (1967), Harper & Row Publishers New York · Zbl 0169.14801
[27] Pinamonti, A.; Valdinoci, E., A lewy-Stampacchia estimate for variational inequalities in the Heisenberg group, Rend. Ist. Mat. Univ. Trieste, 45, 1-22, (2013) · Zbl 1288.35485
[28] Rajala, T., Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differ. Equ., 44, 477-494, (2012) · Zbl 1250.53040
[29] Rodrigues, J. F.; Teymurazyan, R., On the two obstacles problem in Orlicz-Sobolev spaces and applications, Complex Var. Elliptic Equ., 56, 769-787, (2011) · Zbl 1225.35110
[30] Servadei, R.; Valdinoci, E., Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29, 1091-1126, (2013) · Zbl 1275.49016
[31] Sturm, K.-T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131, (2006) · Zbl 1105.53035
[32] Sturm, K.-T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177, (2006) · Zbl 1106.53032
[33] Triebel, H., The structure of functions, Monogr. Math., vol. 97, (2001), Birkhäuser Verlag Basel
[34] Troianiello, G. M., Elliptic differential equations and obstacle problems, Univ. Ser. Math., (1987), Plenum Press New York · Zbl 0655.35051
[35] Villani, C., Optimal transport. old and new, Grundlehren Math. Wiss., vol. 338, (2009), Springer-Verlag Berlin · Zbl 1156.53003
[36] Zălinescu, C., Convex analysis in general vector spaces, (2002), World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 1023.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.