×

zbMATH — the first resource for mathematics

Nonlocal problems at critical growth in contractible domains. (English) Zbl 1333.35328
Summary: We prove the existence of a positive solution for nonlocal problems involving the fractional Laplacian and a critical growth power nonlinearity when the equation is set in a suitable contractible domain.

MSC:
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B09 Positive solutions to PDEs
35B33 Critical exponents in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bahri, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 pp 253– (1988) · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[2] Caffarelli, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 pp 1245– (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[3] Chen, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 pp 330– (2006) · Zbl 1093.45001 · doi:10.1002/cpa.20116
[4] Coron, Topologie et cas limite del injections de Sobolev, C.R. Acad. Sc. Paris 299 pp 209– (1984) · Zbl 0569.35032
[5] Cotsiolis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 pp 225– (2004) · Zbl 1084.26009 · doi:10.1016/j.jmaa.2004.03.034
[6] Dancer, A note on an equation with critical exponent, Bull. Lond. Math. Soc. 20 pp 600– (1988) · Zbl 0646.35027 · doi:10.1112/blms/20.6.600
[7] Ding, Positive solutions of - \(\Delta\) u + u ( n + 2 ) / ( n - 2 ) = 0 on contractible domains, J. Partial Differential Equations 2 pp 83– (1989)
[8] Ekeland, On the variational principle, J. Math. Anal. Appl. 47 pp 324– (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[9] Fall, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 pp 2205– (2012) · Zbl 1260.35050 · doi:10.1016/j.jfa.2012.06.018
[10] Iannizzotto, H s versus C 0 -weighted minimizers, NoDEA 22 pp 477– (2015) · Zbl 1339.35201 · doi:10.1007/s00030-014-0292-z
[11] Palatucci, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calculus of Variations and PDEs 50 pp 799– (2014) · Zbl 1296.35064 · doi:10.1007/s00526-013-0656-y
[12] Palatucci, A global compactness type result for Palais–Smale sequences in fractional Sobolev spaces, Nonlinear Anal. 117 pp 1– (2015) · Zbl 1312.35092 · doi:10.1016/j.na.2014.12.027
[13] Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math. 65 pp 147– (1989) · Zbl 0701.35068 · doi:10.1007/BF01168296
[14] Ros-Oton, The Poh«ízaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 pp 587– (2014) · Zbl 1361.35199 · doi:10.1007/s00205-014-0740-2
[15] Secchi, Coron problem for fractional equations, Differential Integral Equations 28 pp 103– (2015)
[16] Servadei, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 pp 67– (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.