×

zbMATH — the first resource for mathematics

Nonlocal problems with critical Hardy nonlinearity. (English) Zbl 1402.35113
Summary: By means of variational methods we establish existence and multiplicity of solutions for a class of nonlinear nonlocal problems involving the fractional \(p\)-Laplacian and a combined Sobolev and Hardy nonlinearity at subcritical and critical growth.

MSC:
35J60 Nonlinear elliptic equations
35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11, 573-598, (1976) · Zbl 0371.46011
[2] Brasco, L.; Franzina, G., Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37, 769-799, (2014) · Zbl 1315.47054
[3] Brasco, L.; Mosconi, S.; Squassina, M., Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations, 55, 1-32, (2016) · Zbl 1350.46024
[4] Brasco, L.; Parini, E., The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var., 9, 323-355, (2016) · Zbl 1349.35263
[5] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490, (1983) · Zbl 0526.46037
[6] Cerami, G.; Solimini, S.; Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69, 289-306, (1986) · Zbl 0614.35035
[7] Chang, X.; Wang, Z.-Q., Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations, 256, 2965-2992, (2014) · Zbl 1327.35397
[8] Degiovanni, M.; Lancelotti, S., Linking solutions for p-Laplace equations with nonlinearity at critical growth, J. Funct. Anal., 256, 3643-3659, (2009) · Zbl 1170.35418
[9] Frank, R. L.; Seiringer, R., Non-linear ground state representations and sharp Hardy inequalities, J. Func. Anal., 255, 3407-3430, (2008) · Zbl 1189.26031
[10] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352, 5703-5743, (2000) · Zbl 0956.35056
[11] Hirano, N.; Shioji, N., Existence of positive solutions for a semilinear elliptic problem with critical Sobolev and Hardy terms, Proc. Amer. Math. Soc., 134, 2585-2592, (2006) · Zbl 1134.35054
[12] Iannizzotto, A.; Mosconi, S.; Squassina, M., Global Hölder regularity for the fractional p-Laplacian, Rev. Math. Iberoam, 32, 1353-1392, (2016) · Zbl 1433.35447
[13] Kavian, O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications, vol. 13, (1993), Springer-Verlag Paris · Zbl 0797.58005
[14] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118, 349-374, (1983) · Zbl 0527.42011
[15] Lions, P. L., The concentration-compactness principle in the calculus of variations. the limit case, part I, Rev. Mat. Iberoam., 1, 1, 145-201, (1985) · Zbl 0704.49005
[16] Liskevich, V.; Lyakhova, S.; Moroz, V., Positive solutions to nonlinear p-Laplace equations with Hardy potential in exterior domains, J. Differ. Equ., 232, 212-252, (2007) · Zbl 1387.35244
[17] Marano, S.; Mosconi, S., Asymptotic for optimizers of the fractional Hardy-Sobolev inequality, published on CCM
[18] Maz’ya, V.; Shaposhnikova, T., On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195, 230-238, (2002) · Zbl 1028.46050
[19] Montefusco, E., Lower semicontinuity of functionals via the concentration-compactness principle, J. Math. Anal. Appl., 263, 264-276, (2001) · Zbl 1005.49010
[20] Mosconi, S.; Perera, K.; Squassina, M.; Yang, Y., The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations, 55, 55, 105, (2016) · Zbl 1361.35198
[21] Mosconi, S.; Squassina, M., Nonlocal problems at nearly critical growth, Nonlinear Anal., 136, 84-101, (2016) · Zbl 1337.35053
[22] Mosconi, S.; Squassina, M.; Shioji, N., Nonlocal problems at critical growth in contractible domains, Asymptot. Anal., 95, 79-100, (2015) · Zbl 1333.35328
[23] Ros-Oton, X.; Serra, J., The pohožaev identity for the fractional Laplacian, Arch. Rat. Mech. Anal., 213, 587-628, (2014) · Zbl 1361.35199
[24] Servadei, R.; Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12, 2445-2464, (2013) · Zbl 1302.35413
[25] Servadei, R.; Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102, (2015) · Zbl 1323.35202
[26] Smets, D., A concentration-compactness lemma with applications to singular eigenvalue problems, J. Funct. Anal., 167, 463-480, (1999) · Zbl 0942.35127
[27] Szulkin, A.; Willem, M., Eigenvalue problems with indefinite weights, Studia Math., 135, 191-201, (1999) · Zbl 0931.35121
[28] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372, (1976) · Zbl 0353.46018
[29] Tarantello, G., Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations, 5, 25-42, (1992) · Zbl 0758.35035
[30] Terracini, S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Equations, 1, 241-264, (1996) · Zbl 0847.35045
[31] Tertikas, A., Critical phenomena in linear elliptic problems, J. Funct. Anal., 154, 42-66, (1998) · Zbl 0920.35044
[32] Yang, Y., The Brezis-Nirenberg problem for the fractional p-Laplacian involving critical Hardy-Sobolev exponents, preprint
[33] Yang, J.; Yu, X., Fractional Hardy-Sobolev elliptic problems, preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.