# zbMATH — the first resource for mathematics

Optimal decay of extremals for the fractional Sobolev inequality. (English) Zbl 1350.46024
For $$s\in (0,1)$$, $$p>1$$, $$N>sp$$, define $D^{s,p}(\mathbb R^N)=\left\{u\in L^{\frac{Np}{N-sp}}(\mathbb R^N)| \int_{\mathbb R^{2n}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}}\,dx \,dy<\infty \right\},$ and consider $S_{p,s}=\underset{u\in D^{s,p}(\mathbb R^N) \setminus \{0\}} \inf \frac{\int_{\mathbb R^{2n}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}}\,dx \,dy}{\int_{\mathbb R^N }|u|^{\frac{Np}{N-sp}} \,dx}.\eqno(1)$ It is proved that, if $$U\in D^{s,p}(\mathbb R^N)$$ is any minimizer for (1), then $$U\in L^{\infty}(\mathbb R^N)$$ is a constant sign, radially symmetric and monotone function with $\lim_{|x|\to\infty} |x|^{\frac{N-sp}{p-1}} U(x)=U_{\infty}$ for some constant $$U_{\infty}\in \mathbb R\setminus \{0\}$$ (Theorem 1.1). The authors point out the relation between the above result and the proof of the existence of weak solutions for the non-local Brezis-Nirenberg problem in a smooth bounded domain $$\Omega\subset \mathbb R^N,$$ i.e., \begin{aligned} (-\Delta_p)^su&=\lambda |u|^{p-2}u+|u|^{\frac{Np}{N-sp}-2}u\;\text{ in }\Omega, \\ u&=0\;\text{ in } \mathbb R^N\setminus \Omega,\end{aligned} where $$\lambda$$ is positive, and $$\Delta_p u=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$$. A rigorous computation of the fractional $$p$$-Laplace operator of a power function is presented in Appendix A of the paper.

##### MSC:
 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 35B40 Asymptotic behavior of solutions to PDEs 49K20 Optimality conditions for problems involving partial differential equations 35J92 Quasilinear elliptic equations with $$p$$-Laplacian
Full Text:
##### References:
  Almgren, FJ; Lieb, E, Symmetric decreasing rearrangement is sometimes continuous, J. Am. Math. Soc., 2, 683-773, (1989) · Zbl 0688.46014  Andreu, F; Mazón, JM; Rossi, JD; Toledo, J, A nonlocal $$p$$-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40, 1815-1851, (2009) · Zbl 1183.35034  Aubin, T, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11, 573-598, (1976) · Zbl 0371.46011  Brasco, L; Franzina, G, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37, 769-799, (2014) · Zbl 1315.47054  Brasco, L., Parini, E.: The second eigenvalue of the fractional $$p$$-Laplacian. Adv. Calc. Var. (2016). doi:10.1515/acv-2015-0007 · Zbl 1349.35263  Brasco, L; Lindgren, E; Parini, E, The fractional Cheeger problem, Interfaces Free Bound., 16, 419-458, (2014) · Zbl 1301.49115  Chen, W; Li, C; Ou, B, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59, 330-343, (2006) · Zbl 1093.45001  Cordero-Erausquin, D; Nazaret, B; Villani, C, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182, 307-332, (2004) · Zbl 1048.26010  Cotsiolis, A; Tavoularis, N, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295, 225-236, (2004) · Zbl 1084.26009  Damascelli, L; Merchán, S; Montoro, L; Sciunzi, B, Radial symmetry and applications for a problem involving the $$-Δ _p(· )$$ operator and critical nonlinerity in $$\mathbb{R}^N$$, Adv. Math., 265, 313-335, (2014) · Zbl 1316.35135  Castro, A; Kuusi, T; Palatucci, G, Nonlocal Harnack inequalities, J. Funct. Anal., 267, 1807-1836, (2014) · Zbl 1302.35082  Nezza, E; Palatucci, G; Valdinoci, E, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573, (2012) · Zbl 1252.46023  Fiscella, A; Servadei, R; Valdinoci, E, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40, 235-253, (2015) · Zbl 1346.46025  Federer, H; Fleming, WH, Normal and integral currents, Ann. Math., 72, 458-520, (1960) · Zbl 0187.31301  Frank, RL; Seiringer, R, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255, 3407-3430, (2008) · Zbl 1189.26031  Gigli, N; Mosconi, S, The abstract lewy-Stampacchia inequality and applications, J. Math. Pures Appl., 104, 258-275, (2015) · Zbl 1318.49016  Guedda, M; Veron, L, Local and global properties of solutions of quasilinear elliptic equations, J. Differ. Equ., 76, 159-189, (1988) · Zbl 0661.35029  Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional $$p$$-Laplacian problems via Morse theory. Adv. Calc. Var. (2015) (to appear) · Zbl 06567151  Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional $$p$$-Laplacian. Rev. Mat. Iberoamericana. (2016). http://arxiv.org/abs/1411.2956 (to appear) · Zbl 1433.35447  Iannizzotto, A; Mosconi, S; Squassina, M, A note on global regularity for the weak solutions of fractional $$p$$-Laplacian equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27, 15-24, (2016) · Zbl 1336.35360  Ishii, H; Nakamura, G, A class of integral equations and approximation of $$p$$-Laplace equations, Calc. Var. Partial Differ. Equ., 37, 485-522, (2010) · Zbl 1198.45005  Kuusi, T; Mingione, G; Sire, Y, Nonlocal equations with measure data, Commun. Math. Phys., 337, 1317-1368, (2015) · Zbl 1323.45007  Lieb, EH, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118, 349-374, (1983) · Zbl 0527.42011  Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence (2001) · Zbl 0966.26002  Lions, PL, The concentration-compactness principle in the calculus of variations. the limit case. I, Rev. Mat. Iberoamericana, 1, 145-201, (1985) · Zbl 0704.49005  Lindgren, E; Lindqvist, P, Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49, 795-826, (2014) · Zbl 1292.35193  Maz’ja, VG, Classes of regions and imbedding theorems for function spaces, Soviet Math. Dokl., 1, 882-885, (1960) · Zbl 0114.31001  Maz’ya, V; Shaposhnikova, T, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195, 230-238, (2002) · Zbl 1028.46050  Mosconi, S., Perera, K., Squassina, M., Yang, Y.: On the Brezis-Nirenberg problem for the fractional $$p$$-Laplacian (2015). http://arxiv.org/abs/1508.00700 (preprint) · Zbl 1361.35198  Rosen, G, Minimal value for $$c$$ in the Sobolev inequality, SIAM J. Appl. Math., 21, 30-33, (1971) · Zbl 0201.38704  Servadei, R; Valdinoci, E, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367, 67-102, (2015) · Zbl 1323.35202  Sciunzi, B.: Classification of positive $${\cal D}^{1, p}(\mathbb{R}^N)-$$ (2015). http://arxiv.org/abs/1506.03653 (preprint) · Zbl 1344.35061  Talenti, G, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372, (1976) · Zbl 0353.46018  Vetois, J, Priori estimates and application to the symmetry of solutions for critical $$p$$-Laplace equations, J. Differ. Equ., 260, 149-161, (2016) · Zbl 1327.35117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.