×

A canonical form of the equation of motion of linear dynamical systems. (English) Zbl 1402.70023

Summary: The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

MSC:

70K45 Normal forms for nonlinear problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Meirovitch, L., Principles and techniques of vibrations, 162-165, (1997), Prentice Hall
[2] Ma, F.; Iman, A.; Morzfeld, M., The decoupling of damped linear systems in oscillatory free vibration, J. Sound Vib., 324, 408-428, (2009) · doi:10.1016/j.jsv.2009.02.005
[3] Ma, F.; Iman, A.; Morzfeld, M., The decoupling of damped linear systems in free or forced vibration, J. Sound Vib., 329, 3182-3202, (2010) · doi:10.1016/j.jsv.2010.02.017
[4] Morzfeld, M.; Ma, F.; Parlett, BN, The transformation of second-order linear systems into independent equations, SIAM J. Appl. Math., 71, 1026-1043, (2011) · Zbl 1232.34060 · doi:10.1137/100818637
[5] Kawano, DT; Morzfeld, M.; Ma, F., The decoupling of defective linear dynamical systems in free motion, J. Sound Vib., 330, 5165-5183, (2011) · doi:10.1016/j.jsv.2011.05.013
[6] Fawzy, I.; Bishop, RED, On the dynamics of linear non-conservative systems, Proc. R. Soc. Lond. A, 352, 25-40, (1976) · Zbl 0352.70013 · doi:10.1098/rspa.1976.0161
[7] Ince, LE, Ordinary differential equations, 394-395, (1956), Dover
[8] Genta, G., Vibration dynamics and control, 558-559, (2009), Springer
[9] Caughey, TK; O’Kelly, MEJ, Classical normal modes in damped linear dynamic systems, J. Appl. Mech., 32, 583-588, (1965) · doi:10.1115/1.3627262
[10] Sestieri, A.; Ibrahim, SR, Analysis of errors and approximations in the use of modal coordinates, J. Sound Vib., 177, 145-157, (1994) · Zbl 0945.70526 · doi:10.1006/jsvi.1994.1424
[11] Liu, M.; Wilson, JM, Criterion for decoupling dynamic equations of motion of linear gyroscopic systems, AIAA J., 30, 2989-2991, (1992) · Zbl 0799.70010 · doi:10.2514/3.48988
[12] Ma, F.; Caughey, TK, Analysis of linear non-conservative systems, J. Appl. Mech., 62, 685-691, (1995) · Zbl 0838.70015 · doi:10.1115/1.2896001
[13] Chopra, AK, Dynamics of structures: theory and applications to earthquake engineering, 607-610, (2017), Pearson
[14] Tisseur, F.; Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43, 235-286, (2001) · Zbl 0985.65028 · doi:10.1137/S0036144500381988
[15] Prells, U.; Friswell, MI, A relationship between defective systems and unit-rank modifications of classical damping, ASME J. Vib. Acoust., 122, 180-183, (2000) · doi:10.1115/1.568458
[16] Friswell, MI; Prells, U.; Garvey, SD, Low-rank damping modifications and defective systems, J. Sound Vib., 279, 757-774, (2005) · Zbl 1236.70020 · doi:10.1016/j.jsv.2003.11.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.