×

zbMATH — the first resource for mathematics

Equivariant compactifications of vector groups with high index. (Compactifications équivariantes du groupe vectoriel de grand indice.) (English. French summary) Zbl 07105083
Summary: In this note, we classify smooth equivariant compactifications of \(\mathbb{G}_a^n\) that are Fano manifolds with index \(\geq n - 2\).
MSC:
14M27 Compactifications; symmetric and spherical varieties
14J45 Fano varieties
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arzhantsev, I., Flag varieties as equivariant compactifications of \(\mathbb{G}_a^n\), Proc. Amer. Math. Soc., 139, 3, 783-786, (2011) · Zbl 1217.14032
[2] Arzhantsev, I.; Popovskiy, A., Additive actions on projective hypersurfaces. Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, 17-33, (2014) · Zbl 1326.14112
[3] Arzhantsev, I.; Romaskevich, E., Additive actions on toric varieties, Proc. Amer. Math. Soc., 145, 5, 1865-1879, (2017) · Zbl 1375.14155
[4] Ballico, E.; Wiśniewski, J. A., On Bǎnicǎ sheaves and Fano manifolds, Compos. Math., 102, 3, 313-335, (1996) · Zbl 0872.14009
[5] Brion, M., Some structure theorems for algebraic groups, Proc. Symp. Pure Math., 94, 53-126, (2017) · Zbl 1401.14195
[6] Campana, F.; Peternell, T., 4-folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscr. Math., 79, 3-4, 225-238, (1993) · Zbl 0799.14022
[7] Debarre, O.; Kuznetsov, A., Gushel-Mukai varieties: classification and birationalities, Algebraic Geom., 5, 1, 15-76, (2018) · Zbl 1408.14053
[8] Flenner, H., Divisorenklassengruppen quasihomogener Singularitäten, J. Reine Angew. Math., 328, 128-160, (1981) · Zbl 0457.14001
[9] Fu, B.; Hwang, J.-M., Classification of non-degenerate projective varieties with non-zero prolongation and application to target rigidity, Invent. Math., 189, 457-513, (2012) · Zbl 1260.14050
[10] Fu, B.; Hwang, J.-M., Special birational transformations of type \((2, 1)\), J. Algebraic Geom., 27, 1, 55-89, (2018) · Zbl 1391.14028
[11] Fu, B.; Hwang, J.-M., Euler-symmetric projective varieties
[12] Fujita, T., On the structure of polarized manifolds with total deficiency one. I, J. Math. Soc. Jpn., 32, 4, 709-725, (1980) · Zbl 0474.14017
[13] Fujita, T., On the structure of polarized manifolds with total deficiency one. II, J. Math. Soc. Jpn., 33, 3, 415-434, (1981) · Zbl 0474.14018
[14] Fujita, T., On the structure of polarized manifolds with total deficiency one. III, J. Math. Soc. Jpn., 36, 1, 75-89, (1984) · Zbl 0541.14036
[15] Hassett, B.; Tschinkel, Y., Geometry of equivariant compactifications of \(\mathbb{G}_a^n\), Int. Math. Res. Not., 22, 1211-1230, (1999) · Zbl 0966.14033
[16] Huang, Z.; Montero, P., Fano threefolds as equivariant compactifications of the vector group
[17] Ionescu, P.; Russo, F., Conic-connected manifolds, J. Reine Angew. Math., 644, 145-157, (2010) · Zbl 1200.14078
[18] Iskovskikh, V. A.; Prokhorov, Yu. G., Fano varieties, (Algebraic Geometry, V. Algebraic Geometry, V, Encyclopaedia Math. Sci., vol. 47, (1999), Springer: Springer Berlin), 1-247 · Zbl 0912.14013
[19] Kollár, J., Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 32, (1996), Springer-Verlag: Springer-Verlag Berlin
[20] Lyu, R.; Pan, X., Remarks on automorphism and cohomology of cyclic coverings
[21] Mella, M., Existence of good divisors on Mukai varieties, J. Algebraic Geom., 8, 2, 197-206, (1999) · Zbl 0970.14023
[22] Mukai, S., Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA, 86, 9, 3000-3002, (1989) · Zbl 0679.14020
[23] Ruzzi, A., Geometrical description of smooth projective symmetric varieties with Picard number one, Transform. Groups, 15, 1, 201-226, (2010) · Zbl 1194.14071
[24] Wiśniewski, J. A., Fano 4-folds of index 2 with \(b_2 \geq 2\). A contribution to Mukai classification, Bull. Pol. Acad. Sci., Math., 38, 1-12, 173-184, (1990) · Zbl 0766.14036
[25] Wiśniewski, J. A., On Fano manifolds of large index, Manuscr. Math., 70, 2, 145-152, (1991) · Zbl 0726.14028
[26] Zak, F. L., Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, vol. 127, (1993), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0795.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.