zbMATH — the first resource for mathematics

Newton-Okounkov bodies on projective bundles over curves. (English) Zbl 1419.14011
This article studies Newton-Okounkov bodies on projective bundles over a smooth projective curve over an algebraically closed field of characteristic zero.
In particular, the author computes all Newton-Okounkov bodies of ratonal big classes with respect to linear flags compatible with the Harder-Narasimhan filtration of a vector bundle. Moreover, he characterizes semi-stable vector bundles on a curve in terms of Newton-Okounkov bodies.
14C20 Divisors, linear systems, invertible sheaves
14H60 Vector bundles on curves and their moduli
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
Full Text: DOI arXiv
[1] Bădescu, L.: In: by V. Maşek., (ed.) Algebraic surfaces. Transl. from the Romanian. Springer, New York (2001)
[2] Biswas, I.; Hogadi, A.; Parameswaran, AJ, Pseudo-effective cone of Grassmann bundles over a curve, Geom. Dedicata, 172, 69-77, (2014) · Zbl 1301.14019
[3] Boucksom, S., No article title, Corps d’Okounkov. Séminaire Bourbaki, 65, 1-38, (2012)
[4] Biswas, I.; Parameswaran, AJ, Nef cone of flag bundles over a curve, Kyoto J. Math., 54, 353-366, (2014) · Zbl 1302.14025
[5] Brion, M.: Lectures on the Geometry of Flag Varieties. Birkhäuser, Trends in Mathematics. Basel (2005)
[6] Butler, DC, Normal generation of vector bundles over a curve, J. Differ. Geom., 39, 1-34, (1994) · Zbl 0808.14024
[7] Chen, H., Computing volume function on projective bundle over a curve, Hodge theory and algebraic geometry, RIMS Kôkyûroku, 1745, 169-182, (2011)
[8] Ein, L.; Lazarsfeld, R.; Mustaţă, M.; Nakamaye, M.; Popa, M., Asymptotic invariants of base loci, Ann. Inst. Fourier, 56, 1701-1734, (2006) · Zbl 1127.14010
[9] Ein, L.; Lazarsfeld, R.; Mustaţă, M.; Nakamaye, M.; Popa, M., Restricted volumes and base loci of linear series, Am. J. Math., 131, 607-651, (2009) · Zbl 1179.14006
[10] Fulton, W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 2. Berlin etc.: Springer-Verlag. XI, 470 p. DM 118 (1984) · Zbl 0885.14002
[11] Fulger, M., The cones of effective cycles on projective bundles over curves, Math. Z., 269, 449-459, (2011) · Zbl 1230.14047
[12] Hartshorne, R., Ample vector bundles on curves, Nagoya Math. J., 43, 73-89, (1971) · Zbl 0218.14018
[13] Jow, S-Y, Okounkov bodies and restricted volumes along very general curves, Adv. Math., 223, 1356-1371, (2010) · Zbl 1187.14012
[14] Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176(2), 925-978 (2012) · Zbl 1270.14022
[15] Küronya, A., Lozovanu, V.: Positivity of line bundles and Newton-Okounkov bodies. arXiv:1506.06525 (2015)
[16] Küronya, A.; Lozovanu, V.; Maclean, C., Convex bodies appearing as Okounkov bodies of divisors, Adv. Math., 229, 2622-2639, (2012) · Zbl 1253.14008
[17] Lazarsfeld, R.: Positivity in Algebraic Geometry, I & II, vol. 48 & 49. Springer, Berlin (2004) · Zbl 1066.14021
[18] Lesieutre, J., The diminished base locus is not always closed, Compos. Math., 150, 1729-1741, (2014) · Zbl 1317.14031
[19] Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. 42(5), 783-835 (2009) · Zbl 1182.14004
[20] Le Potier, J.: Lectures on Vector Bundles. Cambridge University Press, Cambridge (1997) · Zbl 0872.14003
[21] Manivel, L.: Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence. Société Mathématique de France, Paris (1998) · Zbl 0911.14023
[22] Muñoz, R., Di Sciullo, F., L. E., : Solá Conde. On the existence of a weak Zariski decomposition on projectivized vector bundles. Geom. Dedicata 179, 287-301 (2015) · Zbl 1329.14024
[23] Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. Algebraic geometry, Proc. Symp., Sendai/Jap. 1985, Adv. Stud. Pure Math. 10, 449-476 (1987) · Zbl 0648.14006
[24] Nakayama, N.: Zariski-decomposition and abundance. Mathematical Society of Japan, Tokyo (2004) · Zbl 1061.14018
[25] Okounkov, A., Brunn-Minkowski inequality for multiplicities, Invent. Math., 125, 405-411, (1996) · Zbl 0893.52004
[26] Okounkov, A.: Why would multiplicities be log-concave? In: The orbit method in geometry and physics. In honor of A. A. Kirillov. Papers from the international conference, Marseille, France, December 4-8, 2000, pp. 329-347. Birkhäuser, Boston (2003) · Zbl 1063.22024
[27] Ramanan, S.; Ramanathan, A., Some remarks on the instability flag, Tohoku Math. J., 2, 269-291, (1984) · Zbl 0567.14027
[28] Wolfe, A.: Asymptotic Invariants of Graded Systems of Ideals and Linear Systems on Projective Bundles. Ph.D. Thesis, University of Michigan (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.