×

Fluid penetration effects in porous media contact. (English) Zbl 1160.74392

Summary: The contact boundary conditions at the interface between two fluid-saturated porous bodies are derived. The general derivation is performed within the well-founded framework of the Theory of Porous Media (TPM) based on the constituent balance relations of mass, momentum, and energy accounting for finite discontinuities at the contact surface. Particular attention is drawn to the effects associated with the interstitial fluid flux across the interface. The derived contact conditions include two kinematic continuity conditions for the solid velocity and the fluid seepage velocity as well as two jump conditions for the effective solid stress and the pore-fluid pressure. As an application, the common case of biphasic porous media contact proceeding from materially incompressible constituents and inviscid fluid properties is discussed in detail.

MSC:

74M15 Contact in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alazmi B., Vafai K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer 44, 1735–1749 (2001) · Zbl 1091.76567 · doi:10.1016/S0017-9310(00)00217-9
[2] Alts T., Hutter K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water parts. i and ii. J. Non-Equilib. Thermodyn. 13, 221–280 (1988) · Zbl 0671.73003 · doi:10.1515/jnet.1988.13.3.221
[3] Armstrong C.G., Lai W.M., Mow V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173 (1984) · doi:10.1115/1.3138475
[4] Ateshian G.A.: A theoretical formulation for boundary friction in articular cartilage. J. Biomech. Eng. 119, 81–86 (1997) · doi:10.1115/1.2796069
[5] Ateshian G.A., Lai W.M., Zhu W.B., Mow V.C.: An asymptotic solution for two contacting biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994) · doi:10.1016/0021-9290(94)90044-2
[6] Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967) · doi:10.1017/S0022112067001375
[7] Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[8] Bishop A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)
[9] de Boer R.: Trends in Continuum Mechanics of Porous Media. Springer, Dordrecht (2005) · Zbl 1085.74002
[10] de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 40, Universität-GH-Essen (1986)
[11] de Boer R., Ehlers W.: The development of the concept of effective stresses. Acta Mech. 83, 77–92 (1990) · Zbl 0724.73195 · doi:10.1007/BF01174734
[12] Bowen R.M.: Theory of mixtures. In: Eringen, A.C. (eds) Continuum Physics, vol III, pp. 1–127. Academic Press, New York (1976)
[13] Bowen R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980) · Zbl 0446.73005 · doi:10.1016/0020-7225(80)90114-7
[14] Bowen R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982) · Zbl 0484.76102 · doi:10.1016/0020-7225(82)90082-9
[15] Cieszko M., Kubik J.: Derivation of matching conditions at the contact surface betweeen fluid-saturated porous solid and bulk fluid. Transp. Porous Med. 34, 319–336 (1999) · doi:10.1023/A:1006590215455
[16] Coussy O.: Mechanics of Porous Continua, 2nd edn. Wiley, Chichester (1995) · Zbl 0838.73001
[17] Cowin S.C., Doty S.B.: Tissue Mechanics. Springer, New York (2006) · Zbl 1117.74002
[18] Drumheller D.S.: The theoretical treatment of a porous solid using a mixture theory. Int. J. Solids Struct. 14, 441–456 (1978) · Zbl 0377.73004 · doi:10.1016/0020-7683(78)90009-4
[19] Dunbar Jr., W.L., Ün, K., Donzelli, P.S., Spilker R.L.: An evaluation of three-dimensional diarthrodial joint contact using penetration data and the finite element method. J. Biomech. Eng. 123, 333–340 (2001) · doi:10.1115/1.1384876
[20] Ehlers, W.: Poröse Medien–ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Habilitation, Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen (1989)
[21] Ehlers W.: Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mech. 16, 63–76 (1996)
[22] Ehlers W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002) · Zbl 1062.76050
[23] Ehlers W., Graf T., Ammann M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Engrg. 193, 2885–2910 (2004) · Zbl 1067.74543 · doi:10.1016/j.cma.2003.09.026
[24] Ehlers W., Markert B.: A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media. J. Biomech. Eng. 123, 418–424 (2001) · doi:10.1115/1.1388292
[25] Fisher-Cripps A.C.: Introduction to Contact Mechanics. Mechanical Engineering Series. Springer, New York (2000) · Zbl 1123.74300
[26] Gibson R.E., England G.L., Hussey M.J.L.: The theory of one-dimensional consolidation of saturated clays. Géotechnique 17, 261–273 (1967) · doi:10.1680/geot.1967.17.3.261
[27] Gurtin M.E.: An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, vol. 158. Academic Press, New York (1981) · Zbl 0559.73001
[28] Hadamard, J.: Leçons sur la propagation des ondes et les equations de l’hydrodynamique. Chelsea, New York (1949). Reprint of Herman, Paris 1903 · JFM 34.0793.06
[29] Hou J.S., Holmes M.H., Lai W.M., Mow V.C.: Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Eng. 111, 78–87 (1989) · doi:10.1115/1.3168343
[30] Hou J.S., Mow V.C., Lai W.M., Holmes M.H.: An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 25, 247–259 (1992) · doi:10.1016/0021-9290(92)90024-U
[31] Irschik H.: On the necessity of surface growth terms for the consistency of jump relations at a singular surface. Acta Mech. 162, 195–211 (2003) · Zbl 1064.74113 · doi:10.1007/s00707-002-0995-9
[32] Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) · Zbl 0599.73108
[33] Kelly P.D.: A reacting continuum. Int. J. Eng. Sci. 2, 129–153 (1964) · Zbl 0137.18401 · doi:10.1016/0020-7225(64)90001-1
[34] Kosinski W.: Field Singularities and Wave Analysis in Continuum Mechanics. Ellis Horwood, Chichester (1986)
[35] Lai W.M., Hou J.S., Mow V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991) · doi:10.1115/1.2894880
[36] Lewis R.W., Schrefler B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998) · Zbl 0935.74004
[37] Mahnkopf, D.: Lokalisierung fluidgesättigter poröser Festkörper bei finiten elastoplastischen Deformationen. Dissertation, Bericht Nr. II-5 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart, Germany (2000)
[38] Mak A.F.: Unconfined compression of hydrated soft viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology 23, 371–383 (1986)
[39] Mak A.F., Lai W.M., Mow V.C.: Biphasic indentation of articular cartilage–Part 1: Theoretical analysis. J. Biomech. 20, 703–714 (1987) · doi:10.1016/0021-9290(87)90036-4
[40] Markert, B.: Porous Media Viscoelasticity with Application to Polymeric Foams. Dissertation, Report No. II-12 of the Institute of Applied Mechanics (CE), Universität Stuttgart, Germany (2005)
[41] Markert B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transp. Porous Med. 70, 427–450 (2007). doi: 10.1007/s11242-007-9107-6 · doi:10.1007/s11242-007-9107-6
[42] Morland L.W., Gray J.M.N.T.: Phase change interactions and singular fronts. Continuum Mech. Thermodyn. 7, 387–414 (1995) · Zbl 0841.73002
[43] Morland L.W., Sellers S.: Multiphase mixtures and singular surfaces. Int. J. Nonlinear Mech. 36, 131–146 (2001) · Zbl 1342.76127 · doi:10.1016/S0020-7462(99)00094-3
[44] Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G.: Biphasic creep and stress relaxation of articular cartilage: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980) · doi:10.1115/1.3138202
[45] Mow V.C., Kwan M.K., Lai W.M., Holmes M.H.: A finite deformation theory of linearly permeable soft hydrated tissues. In: Schmid-Schönbein, G.W., Woo, S.L.Y., Zweifach, B.W. (eds) Frontiers in Biomechanics, pp. 73–84. Springer, New York (1986)
[46] Rajagopal K.R., Wineman A.S., Gandhi M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 1453–1463 (1986) · Zbl 0594.73007 · doi:10.1016/0020-7225(86)90074-1
[47] Ratcliff A., Mow V.C.: Articular cartilage. In: Comper, W.D. (eds) Extracellular Matrix, vol. 1, Tissue Function, pp. 234–302. Harwood Academic Publishers, GmbH, Switzerland (1996)
[48] Richardson S.: A model of the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327–336 (1971) · Zbl 0235.76045 · doi:10.1017/S002211207100209X
[49] Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact: Variational Methods. Lect. Notes Phys. Springer, Berlin (2004) · Zbl 1069.74001
[50] Skempton A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960)
[51] Slattery J.C.: Interfacial Transport Phenomena. Springer, New York (1990) · Zbl 1116.76001
[52] Taylor G.I.: A model of the boundary condition of a porous material. part 1. J. Fluid Mech. 49, 319–326 (1971) · Zbl 0254.76093 · doi:10.1017/S0022112071002088
[53] Truesdell C., Noll W.: The non-linear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, vol. III/3, Springer, Berlin (1965) · Zbl 0779.73004
[54] Ün K., Spilker R.L.: A penetration-based finite element method for hyperelastic tissues in contact: Part1–Derivation of contact boundary conditions. J. Biomech. Eng. 128, 124–130 (2006) · doi:10.1115/1.2133769
[55] Williams W.O.: Constitutive equations for flow of an incompressible viscous fluid through a porous medium. Quart. J. Appl. Math. 128, 255–267 (1978) · Zbl 0392.76086
[56] Wriggers P.: Computational Contact Mechanics. Wiley, Chichester (2002)
[57] Wu J.Z., Herzog W., Epstein M.: An improved solution for the contact of two biphasic cartilage layers. J. Biomech. 30, 371–375 (1997) · doi:10.1016/S0021-9290(96)00148-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.