×

Finite element modeling of elasto-plastic contact between rough surfaces. (English) Zbl 1162.74416

Summary: This paper presents a finite element calculation of frictionless, non-adhesive, contact between a rigid plane and an elasto-plastic solid with a self-affine fractal surface. The calculations are conducted within an explicit dynamic Lagrangian framework. The elasto-plastic response of the material is described by a \(J_2\) isotropic plasticity law. Parametric studies are used to establish general relations between contact properties and key material parameters. In all cases, the contact area \(A\) rises linearly with the applied load. The rate of increase grows as the yield stress \(\sigma_y\) decreases, scaling as a power of \(\sigma_y\) over the range typical of real materials. Results for \(A\) from different plasticity laws and surface morphologies can all be described by a simple scaling formula. Plasticity produces qualitative changes in the distributions of local pressures in the contact and of the size of connected contact regions. The probability of large local pressures is decreased, while large clusters become more likely. Loading-unloading cycles are considered and the total plastic work is found to be nearly constant over a wide range of yield stresses.

MSC:

74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Archard, J. F., Elastic deformation and the laws of friction, Proc. R. Soc. London Ser. A, 243, 190-205 (1957)
[2] Batrouni, G. G.; Hansen, A.; Schmittbuhl, J., Elastic response of rough surfaces in partial contact, Europhys. Lett., 60, 5, 724-730 (2002)
[3] Belytschko, T.; Hughes, T. J.R., Computational Methods for Transient Analysis (1983), North-Holland: North-Holland Amsterdam, pp. 1-65, 67-155 · Zbl 0533.73002
[4] Berthoud, P.; Baumberger, T., Shear stiffness of a solid-solid multicontact interface, Proc. R. Soc. London Ser. A, 454, 1615-1634 (1998)
[5] Blau, P.J., 1992. Scale effects in sliding friction: an experimental study. In: Singer, I.L., Pollock, H.M. (Eds.), Fundamentals of Friction: Macroscopic and Microscopic Processes, pp. 523-534.; Blau, P.J., 1992. Scale effects in sliding friction: an experimental study. In: Singer, I.L., Pollock, H.M. (Eds.), Fundamentals of Friction: Macroscopic and Microscopic Processes, pp. 523-534.
[6] Borri-Brunetto, M.; Chiaia, B.; Ciavarella, M., Comput. Meth. Appl. Mech. Eng., 190, 6053 (2001)
[7] Bouchaud, E., Scaling properties of cracks, J. Phys.: Condens. Matter, 9, 4319-4344 (1997)
[8] Bowden, F. P.; Tabor, D., The Friction and Lubrication of Solids. Part I & II (1964), Oxford University Press: Oxford University Press Oxford · Zbl 0987.74002
[9] Bush, A. W.; Gibson, R. D.; Thomas, T. R., The elastic contact of a rough surface, Wear, 35, 87 (1975)
[10] Camacho, G. T.; Ortiz, M., Adaptive lagrangian modeling of ballistic penetration of metallic targets, Comput. Methods Appl. Mech. Eng., 142, 269-301 (1997) · Zbl 0892.73056
[11] Chang, W. R., An elastic-plastic contact model for a rough surface with an ion-plated soft metallic coating, Wear, 212, 229-237 (1997)
[12] Chang, W. R.; Etsion, I.; Bogy, D. B., An elastic-plastic model for the contact of rough surfaces, ASME J. Tribol., 110, 50-56 (1987)
[13] Ciavarella, M.; Murolo, G.; Demelio, G., The electrical/thermal conductance of rough surfaces—the Weierstrass—Archard multiscale model, Int. J. Solids Struct., 41, 15, 4107-4120 (2004) · Zbl 1134.74390
[14] Cuitino, A.; Ortiz, M., Material-independent method for extending stress update algorithm from small-strain plasticity to finite plasticity with multiplicative kinematics, Eng. Comput., 9, 437-451 (1992)
[15] Dieterich, J. H.; Kilgore, B., Imagining surface contacts: power law contact distributions and contact stresses in quartz, calcit, glass and acrylic plastic, Tectonophysics, 256, 219 (1996)
[16] Dwyer-Joyce, R. S.; Drinkwater, B. W.; Quinn, A. M., The use of ultrasound in the investigation of rough surface interface, ASME Trans. J. Tribol., 123, 8-16 (2001)
[17] Gao, Y.F., Bower, A.F., Kim K.-S., 2004. Some issues of rough surface contact plasticity at micro- and nano-scales. Material Research Society Symposium Proceedings, R7.3, winter meeting at Boston.; Gao, Y.F., Bower, A.F., Kim K.-S., 2004. Some issues of rough surface contact plasticity at micro- and nano-scales. Material Research Society Symposium Proceedings, R7.3, winter meeting at Boston.
[18] Greenwood, J. A.; Williamson, J. B.P., Contact of nominally flat surfaces, Proc. R. Soc. London Ser A, 295, 300-319 (1966)
[19] Greenwood, J. A.; Wu, J. J., Surface roughness and contact: an apology, Meccanica, 36, 617-630 (2001) · Zbl 1045.74008
[20] Hertz, H., Über die Berührung fester elastischer Körper (On the contact of elastic solids), J. Reine und Angew. Math., 92, 156-171 (1882) · JFM 14.0807.01
[21] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[22] Hyun, S.; Pei, L.; Molinari, J. F.; Robbins, M., Finite-element analysis of contact between elastic self-affine surfaces, Phy. Rev. E, 70, 026117 (2004)
[23] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press Cambridge, pp. 84-106, 171-179. · Zbl 0599.73108
[24] Kim, J. Y.; Baltazar, A.; Rokhlin, S. I., Ultrasonic assessment of rough surface contact between solids from elastoplastic loading-unloading hysteresis cycle, J. Mech. Phys. Solids, 52, 1911-1934 (2004)
[25] Krim, J.; Palasantzas, G., Experimental observations of self-affine scaling and kinetic roughening at sub-micron lengthscales, Int. J. Mod. Phys. B, 9, 599 (1995)
[26] Mandelbrot, B. B., The Fractal Geometry of Nature (1982), W.H. Freeman: W.H. Freeman New York · Zbl 0504.28001
[27] Meakin, P., Fractals, Scaling and Growth Far From Equilibrium (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1064.37500
[28] Molinari, J. F.; Ortiz, M., Three-dimensional adaptive meshing by subdivision and edge-collapse in finite-deformation dynamic-plasticity problems with application to adiabatic shear banding, Int. J. Num. Methods Eng., 53, 1101 (2002)
[29] Molinari, J. F.; Ortiz, M.; Radovitzky, R.; Repetto, E. A., Finite-element modeling of dry sliding wear in metals, Eng. Comput., 18, 592 (2001) · Zbl 1153.74376
[30] Persson, B. N.J., Elastoplastic contact between randomly rough surfaces, Phys. Rev. Lett., 87, 116101 (2001)
[31] Tworzydlo, W. W.; Cecot, W.; Oden, J. T.; Yew, C. H., Computational micro- and macro-scopic models of contact and friction: formulation, approach and applications, Wear, 220, 113-140 (1998)
[32] Voss, R. F., Fundamental Algorithms in Computer Graphics (1985), Spring: Spring Berlin, p. 805
[33] Zhao, D.; Maietta, M.; Chang, L., An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow, ASME J. Tribol., 122, 86-93 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.