×

zbMATH — the first resource for mathematics

Transmission line meshes for computational simulation of electromagnetic modes in the Earth’s atmosphere. (English) Zbl 1141.78313
Summary: Two transmission line meshes to simulate electromagnetic waves in the Earth’s atmosphere are developed, one with the link transmission lines connected in parallel and the other with connections in series. The equations describing propagation of waves through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in a spherical cavity with lossy dielectric material between the external conducting surfaces, respectively. The transmission line meshes are used for a numerical study of the natural electromagnetic noise due to lightning discharges in the Earth-ionosphere cavity. The numerical algorithm finds values for Schumann resonances very close to the experimental ones, which allows us to affirm that this methodology is a valid numerical tool for predicting these resonances on other planets or moons as well.
Reviewer: Reviewer (Berlin)
MSC:
78A40 Waves and radiation in optics and electromagnetic theory
78A50 Antennas, waveguides in optics and electromagnetic theory
86A25 Geo-electricity and geomagnetism
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1038/188638a0 · doi:10.1038/188638a0
[2] DOI: 10.1029/2002JD002347 · doi:10.1029/2002JD002347
[3] DOI: 10.1109/8.898776 · doi:10.1109/8.898776
[4] DOI: 10.1109/22.277448 · doi:10.1109/22.277448
[5] DOI: 10.1016/S1364-6826(02)00222-5 · doi:10.1016/S1364-6826(02)00222-5
[6] DOI: 10.1029/2004RS003056 · doi:10.1029/2004RS003056
[7] DOI: 10.1029/2002JA009495 · doi:10.1029/2002JA009495
[8] DOI: 10.1029/1999JA900056 · doi:10.1029/1999JA900056
[9] Schumann, W.O. (1952), ”Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist”,Z. Naturforsch. A, Vol. 7, pp. 149-54. · Zbl 0047.20209 · doi:10.1515/zna-1952-0202
[10] DOI: 10.1016/0021-9169(90)90113-2 · doi:10.1016/0021-9169(90)90113-2
[11] DOI: 10.1029/95JD03301 · doi:10.1029/95JD03301
[12] DOI: 10.1109/LAWP.2002.805123 · doi:10.1109/LAWP.2002.805123
[13] DOI: 10.1109/LAWP.2004.834936 · doi:10.1109/LAWP.2004.834936
[14] DOI: 10.1109/TAP.2005.844415 · Zbl 1368.86001 · doi:10.1109/TAP.2005.844415
[15] DOI: 10.1016/0021-9169(95)00154-9 · doi:10.1016/0021-9169(95)00154-9
[16] DOI: 10.1126/science.256.5060.1184 · doi:10.1126/science.256.5060.1184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.