×

Minimum energy desynchronizing control for coupled neurons. (English) Zbl 1276.92017

Summary: We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson’s disease. The event-based nature of the input results in its administration only when it is necessary, which, in general, amounts to fewer applications, and hence, less charge transfer to and from the tissue. The minimum energy nature of the input may also help prolong battery life for implanted stimulus generators. For the example considered, it is shown that the proposed control causes a considerable amount of randomization in the timing of each neuron’s next spike, leading to desynchronization for the network.

MSC:

92C20 Neural biology
49J15 Existence theories for optimal control problems involving ordinary differential equations

Software:

ToolboxLS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brown, E., Moehlis, J., Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16, 673-715. · Zbl 1054.92006 · doi:10.1162/089976604322860668
[2] Caputo, M.R. (2005). Foundations of dynamic economic analysis: Optimal control theory and applications. Cambridge: Cambridge University Press. · Zbl 1092.91061 · doi:10.1017/CBO9780511806827
[3] Crandall, M.G., & Lions, P.L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, 43(167), 1. · Zbl 0557.65066 · doi:10.1090/S0025-5718-1984-0744921-8
[4] Danzl, P., Hespanha, J., Moehlis, J. (2009). Event-based minimum-time control of oscillatory neuron models. Biological Cybernetics, 101, 387-399. · Zbl 1345.92037 · doi:10.1007/s00422-009-0344-3
[5] Danzl, P., Nabi, A., Moehlis, J. (2010). Charge-balanced spike timing control for phase models of spiking neurons. Discrete and Continuous Dynamical Systems Series A, 28, 1413-1435. · Zbl 1197.92008 · doi:10.3934/dcds.2010.28.1413
[6] Dasanayake, I., & Li, J.-S. (2011). Optimal design of minimum-power stimuli for phase models of neuron oscillators. Physical Review E, 83, 061916. · doi:10.1103/PhysRevE.83.061916
[7] Feng, X.J., Shea-Brown, E., Greenwald, B., Kosut, R., Rabitz, H. (2007a). Optimal deep brain stimulation of the subthalamic nucleus - a computational study. Journal of Computational Neuroscience, 23, 265-282. · doi:10.1007/s10827-007-0031-0
[8] Feng, X.J., Greenwald, B., Rabitz, H., Shea-Brown, E., Kosut, R. (2007b). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4, L14-21. · doi:10.1088/1741-2560/4/2/L03
[9] Gottlieb, S., Shu, C.-W., Tadmor, E. (2001). Strong stability-preserving high-order time discretization methods. SIAM Review, 43, 89. · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[10] Guckenheimer, J. (1975). Isochrons and phaseless sets. Journal of Mathematical Biology, 1, 259-273. · Zbl 0345.92001 · doi:10.1007/BF01273747
[11] Harten, A., Engquist, B., Osher, S., Chakravarthy, S. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 303, 231-303. · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[12] Hespanha, J. (2007). An introductory course in noncooperative game theory. Available at http://www.ece.ucsb.edu/ hespanha/published. Accessed Oct 2011 · Zbl 0659.65132
[13] Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.
[14] Honeycutt, R.L. (1992). Stochastic runge-kutta algorithms. I. white noise. Physical Review A, 45, 600-603. · doi:10.1103/PhysRevA.45.600
[15] Johnston, D., & Wu, S. M.-S. (1995). Foundations of cellular neurophysiology. Cambridge, MA: MIT Press.
[16] Keener, J., & Sneyd, J. (1998). Mathematical physiology. New York: Springer. · Zbl 0913.92009
[17] Kirk, D.E. (1970). Optimal control theory: an introduction. Dover Publications Inc.
[18] Kiss, I.Z., Rusin, C.G., Kori, H., Hudson, J.L. (2007). Engineering complex dynamical structures: sequential patterns and desynchronization. Science, 316, 1886-1889. · Zbl 1226.93068 · doi:10.1126/science.1140858
[19] Liu, X., Osher, S., Chan, T. (1994). Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200-212. · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[20] Mitchell, I. (2007). A toolbox of level set methods. Technical Report UBC CS TR-2007-11, University of British Columbia.
[21] Moehlis, J. (2006). Canards for a reduction of the Hodgkin-Huxley equations. Journal of Mathematical Biology, 52, 141-153. · Zbl 1091.92019 · doi:10.1007/s00285-005-0347-1
[22] Moehlis, J., Shea-Brown, E., Rabitz, H. (2006). Optimal inputs for phase models of spiking neurons. ASME - Journal of Computational and Nonlinear Dynamics, 1, 358-367. · doi:10.1115/1.2338654
[23] Nabi, A. & Moehlis, J. (2009). Charge-balanced optimal inputs for phase models of spiking neurons. In Proceedings of the 2009 ASME dynamic systems and control conference. Hollywood, CA.
[24] Nabi, A.; Moehlis, J., Nonlinear hybrid control of phase models for coupled oscillators, 922-923 (2010), Baltimore
[25] Nabi, A., & Moehlis, J. (2011a). Single input optimal control for globally coupled neuron networks. Journal of Neural Engineering, 8, 065008. doi:10.1088/1741-2560/8/6/065008. · doi:10.1088/1741-2560/8/6/065008
[26] Nabi, A., & Moehlis, J. (2011b). Time optimal control of spiking neurons. Journal of Mathematical Biology, 64, 981-1004. · Zbl 1250.49002 · doi:10.1007/s00285-011-0441-5
[27] Nabi, A., Mirzadeh, M., Gibou, F., Moehlis, J. (2012). Minimum energy spike randomization for neurons. In Proceedings of the 2012 American Control Conference (pp. 4751-4756). Canada: Montreal.
[28] Nini, A., Feingold, A., Slovin, H., Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. Journal of Neurophysiology, 74(4), 1800-1805.
[29] Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces (1st ed.). New York: Springer. · Zbl 1026.76001
[30] Osher, S., & Sethian, J.A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12-49. · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[31] Osher, S., & Shu, C. (1991). High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, 28(4), 907-922. · Zbl 0736.65066 · doi:10.1137/0728049
[32] Osinga, H., & Moehlis, J. (2010). A continuation method for computing global isochrons. SIAM Journal on Applied Dynamical Systems, 9, 1201-1228. · Zbl 1232.37014 · doi:10.1137/090777244
[33] Pare, D., Curro’Dossi, R., Steriade, M. (1990). Neuronal basis of the Parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience, 35, 217-226. · doi:10.1016/0306-4522(90)90077-H
[34] Pontryagin, L., Trirogoff, K.N., Neustadt, L. (1962). The mathematical theory of optimal processes. Wiley New York.
[35] Popovych, O.V., Hauptmann, C., Tass, P.A. (2006). Control of neuronal synchrony by nonlinear delayed feedback. Biological Cybernetics, 95(1), 69-85. · Zbl 1169.93338 · doi:10.1007/s00422-006-0066-8
[36] Schiff, S., Jerger, K., Duong, D., Chang, T., Spano, M., Ditto, W., et al. (1994). Controlling chaos in the brain. Nature, 370(6491), 615-620. · doi:10.1038/370615a0
[37] Schiff, S. (2010). Towards model-based control of Parkinson’s disease. Philosophical Transactions of the Royal Society A, 368, 2269-2308. · Zbl 1195.34071 · doi:10.1098/rsta.2010.0050
[38] Schiff, S., & Sauer, T. (2008). Kalman filter control of a model of spatiotemporal cortical dynamics. Journal of Neural Engineering, 5, 1-8. · doi:10.1088/1741-2560/5/1/001
[39] Schöll, E., Hiller, G., Hövel, P., Dahlem, M.A. (2009). Time-delayed feedback in neurosystems. Philosophical Transactions of the Royal Society A, 367, 1079-1096. · Zbl 1185.34108 · doi:10.1098/rsta.2008.0258
[40] Sethian, J.A. (1999). Level set methods and fast marching methods (2nd ed.). Cambridge University Press. · Zbl 0929.65066
[41] Shu, C., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471. · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[42] Shu, C., & Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. Journal of Computational Physics, 83(1), 32-78. · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[43] Stigen, T., Danzl, P., Moehlis, J., Netoff, T. (2011). Controlling spike timing and synchrony in oscillatory neurons. Journal of Neurophysiology, 105, 2074-2082. · doi:10.1152/jn.00898.2011
[44] Tass, P.A. (1999). Phase resetting in medicine and biology. New York: Springer. · Zbl 0935.92014
[45] Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A.A., Lado, F., Fazzini, E., Ribary, U., Llinàs, R. (1996). Central motor loop oscillations in Parkinsonian resting tremor revealed magnetoencephalography. Neurology, 46(5), 1359. · doi:10.1212/WNL.46.5.1359
[46] Wilson, C., Beverlin II, B., Netoff, T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in Systems Neuroscience, 5, Art. No. 50.
[47] Winfree, A. (2001). The Geometry of biological time (2nd ed.). New York: Springer. · Zbl 1014.92001 · doi:10.1007/978-1-4757-3484-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.