×

To delay or not to delay – stability of connected cruise control. (English) Zbl 1384.93108

Insperger, Tamás (ed.) et al., Time delay systems. Theory, numerics, applications, and experiments. Selected papers based on the presentations at the 12th IFAC workshop, Ann Arbor, MI, USA, June 28–30, 2015. Cham: Springer (ISBN 978-3-319-53425-1/hbk; 978-3-319-53426-8/ebook). Advances in Delays and Dynamics 7, 263-282 (2017).
Summary: The dynamics of connected vehicle systems are investigated where vehicles exchange information via wireless vehicle-to-vehicle (V2V) communication. In particular, Connected Cruise Control (CCC) strategies are considered when using different delay configurations. Disturbance attenuation (string stability) along open chains is compared to the linear stability results using ring configuration. The results are summarized using stability diagrams that allow one to design the control gains for different delay values. Critical delay values are calculated and trade-offs between the different strategies are pointed out.
For the entire collection see [Zbl 1380.34003].

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
90B18 Communication networks in operations research
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Avedisov, S.S., Orosz, G.: Nonlinear network modes in cyclic systems with applications to connected vehicles. J. Nonlinear Sci. 25, 1015-1049 (2015) · Zbl 1320.93012 · doi:10.1007/s00332-015-9249-6
[2] Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58(5), 5429-5435 (1998) · doi:10.1103/PhysRevE.58.5429
[3] Davis, L.C.: Effect of adaptive cruise control systems on traffic flow. Phys. Rev. E 69(6), 066-110 (2004)
[4] Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9(4), 545-567 (1961) · Zbl 0096.14205 · doi:10.1287/opre.9.4.545
[5] Ge, J.I., Orosz, G.: Dynamics of connected vehicle systems with delayed acceleration feedback. Trans. Res. Part C 46, 46-64 (2014) · doi:10.1016/j.trc.2014.04.014
[6] Ge, J.I., Orosz, G.: Optimal control of connected vehicle systems with communication delay and driver reaction time. IEEE Trans. Intell. Trans. Syst. (2016) (published online). doi:10.1109/TITS.2016.2633164 · doi:10.1109/TITS.2016.2633164
[7] Greenshields, B.D.: Studying traffic capacity by new methods. J. Appl. Psychol. 20(3), 353-358 (1936)
[8] Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86-106 (1959) · Zbl 1414.90089 · doi:10.1287/opre.7.1.86
[9] Insperger, T., Stépán, G.: Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications. Applied Mathematical Sciences, vol. 178. Springer (2011) · Zbl 1245.93004
[10] Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Comput. Aided Civ. Infrastruct. Eng. 23(2), 125-137 (2008) · doi:10.1111/j.1467-8667.2007.00529.x
[11] Liang, C.Y., Peng, H.: Optimal adaptive cruise control with guaranteed string stability. Veh. Syst. Dyn. 32(4-5), 313-330 (1999) · doi:10.1076/vesd.32.4.313.2083
[12] Öncü, S., Ploeg, J., van de Wouw, N., Nijmeijer, H.: Cooperative adaptive cruise control: network-aware analysis of string stability. IEEE Trans. Intell. Trans. Syst. 15(4), 1527-1537 (2014) · doi:10.1109/TITS.2014.2302816
[13] Orosz, G.: Connected cruise control: modelling, delay effects, and nonlinear behaviour. Veh. Syst. Dyn. 54(8), 1147-1176 (2016) · doi:10.1080/00423114.2016.1193209
[14] Orosz, G., Stépán, G.: Subcritical Hopf bifurcations in a car-following model with reaction-time delay. Proc. R. Soc. A 462(2073), 2643-2670 (2006) · Zbl 1149.70326 · doi:10.1098/rspa.2006.1660
[15] Orosz, G., Wilson, R.E., Stépán, G.: Traffic jams: dynamics and control. Philos. Trans. R. Soc. A 368(1928), 4455-4479 (2010) · Zbl 1202.90075 · doi:10.1098/rsta.2010.0205
[16] Qin, W.B., Gomez, M.M., Orosz, G.: Stability and frequency response under stochastic communication delays with applications to connected cruise control design. IEEE Trans. Intell. Trans. Syst. 18(2), 388-403 (2017)
[17] Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics, vol. 210. Longman (1989) · Zbl 0686.34044
[18] Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Trans. Autom. Control 41(3), 349-357 (1996) · Zbl 0848.93054 · doi:10.1109/9.486636
[19] Swaroop, D., Hedrick, J.K., Chien, C.C., Ioannou, P.A.: A comparision of spacing and headway control laws for automatically controlled vehicles. Veh. Syst. Dyn. 23(8), 597-625 (1994) · doi:10.1080/00423119408969077
[20] Wagner, P.: Fluid-dynamical and microscopic description of traffic flow - a data-driven comparison. Philos. Trans. R. Soc. A 368(1928), 4481-4495 (2010) · Zbl 1202.90081 · doi:10.1098/rsta.2010.0122
[21] Wang, M., Daamen, W., Hoogendoorn, S.P., van Arem, B.: Rolling horizon control framework for driver assistance systems. Part II: cooperative sensing and cooperative control. Trans. Res. Part C 40, 290-311 (2014) · doi:10.1016/j.trc.2013.11.024
[22] Zhang, L., Orosz, G.: Motif-based analysis of connected vehicle systems: delay effects and stability. IEEE Trans. Intell. Trans. Syst. 17(6), 1638-1651 (2016) · doi:10.1109/TITS.2015.2509782
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.