×

zbMATH — the first resource for mathematics

A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations. (English) Zbl 1284.35065

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35F21 Hamilton-Jacobi equations
35D40 Viscosity solutions to PDEs
35F31 Initial-boundary value problems for nonlinear first-order PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barles, G, Remarques sur des résultats d’existence pour LES équations de Hamilton-Jacobi du premier ordre, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2, 21-32, (1985) · Zbl 0573.35010
[2] Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi, Math. Appl. (Berlin), 17. Springer, Paris (1994) · Zbl 0819.35002
[3] Barles, G., Ishii, H., Mitake, H.: On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions. Arch. Ration. Mech. Anal. 204(2), 515-558 (2012) · Zbl 1282.70037
[4] Barles, G; Mitake, H, A PDE approach to large-time asymptotics for boundary-value problems for nonconvex Hamilton-Jacobi equations, Commun. Partial Differ. Equ., 37, 136-168, (2012) · Zbl 1243.35021
[5] Barles, G; Souganidis, PE, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31, 925-939, (2000) · Zbl 0960.70015
[6] Cagnetti, F., Gomes, D.A., Mitake, H., Tran, H.V.: A new method for large time behavior of convex Hamilton-Jacobi equations I: degenerate equations and weakly coupled systems, submitted (arXiv: 1212.4694) · Zbl 1312.35020
[7] Crandall, MG; Ishii, H; Lions, P-L, User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc. (N.S.), 27, 1-67, (1992) · Zbl 0755.35015
[8] Davini, A; Siconolfi, A, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38, 478-502, (2006) · Zbl 1109.49034
[9] Fathi, A, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327, 267-270, (1998) · Zbl 1052.37514
[10] Fujita, Y; Ishii, H; Loreti, P, Asymptotic solutions of Hamilton-Jacobi equations in Euclidean \(n\) space, Indiana Univ. Math. J., 55, 1671-1700, (2006) · Zbl 1112.35041
[11] Ichihara, N; Ishii, H, The large-time behavior of solutions of Hamilton-Jacobi equations on the real line, Methods Appl. Anal., 15, 223-242, (2008) · Zbl 1170.35339
[12] Ichihara, N; Ishii, H, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians, Arch. Ration. Mech. Anal., 194, 383-419, (2009) · Zbl 1243.70017
[13] Ishii, H, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Am. Math. Soc., 100, 247-251, (1987) · Zbl 0644.35017
[14] Ishii, H, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean \(n\) space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 231-266, (2008) · Zbl 1145.35035
[15] Ishii, H, Long-time asymptotic solutions of convex Hamilton-Jacobi equations with Neumann type boundary conditions, Calc. Var. Partial Differ. Equ., 42, 189-209, (2011) · Zbl 1222.35031
[16] Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi equations. Unpublished work · Zbl 1052.37514
[17] Mitake, H, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58, 393-410, (2008) · Zbl 1178.35137
[18] Mitake, H, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton-Jacobi equations, NoDEA Nonlinear Differ. Equ. Appl., 15, 347-362, (2008) · Zbl 1171.35332
[19] Namah, G; Roquejoffre, J-M, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Commun. Partial Differ. Equ., 24, 883-893, (1999) · Zbl 0924.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.