×

zbMATH — the first resource for mathematics

A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians. (English) Zbl 1312.35020
Summary: We investigate large-time asymptotics for viscous Hamilton-Jacobi equations with possibly degenerate diffusion terms. We establish new results on the convergence, which are the first general ones concerning equations which are neither uniformly parabolic nor first order. Our method is based on the nonlinear adjoint method and the derivation of new estimates on long time averaging effects. It also extends to the case of weakly coupled systems.

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35F55 Initial value problems for systems of nonlinear first-order PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
35F21 Hamilton-Jacobi equations
35K65 Degenerate parabolic equations
35D40 Viscosity solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Barles, G.; Ishii, H.; Mitake, H., A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equation, Bull. Sci. Math., (2013), in press · Zbl 1284.35065
[2] Barles, G.; Souganidis, P. E., On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31, 4, 925-939, (2000) · Zbl 0960.70015
[3] Barles, G.; Souganidis, P. E., Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32, 6, 1311-1323, (2001) · Zbl 0986.35047
[4] Cagnetti, F.; Gomes, D.; Tran, H. V., Aubry-Mather measures in the nonconvex setting, SIAM J. Math. Anal., 43, 6, 2601-2629, (2011) · Zbl 1258.35059
[5] Cagnetti, F.; Gomes, D.; Tran, H. V., Adjoint methods for obstacle problems and weakly coupled systems of PDE, ESAIM Control Optim. Calc. Var., 19, 3, 754-779, (2013) · Zbl 1273.35090
[6] Camilli, F.; Ley, O.; Loreti, P.; Nguyen, V., Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations, Nonlinear Differ. Equ. Appl., 19, 719-749, (2012) · Zbl 1254.49016
[7] Davini, A.; Siconolfi, A., A generalized dynamical approach to the large-time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38, 2, 478-502, (2006) · Zbl 1109.49034
[8] Evans, L. C., Adjoint and compensated compactness methods for Hamilton-Jacobi PDE, Arch. Ration. Mech. Anal., 197, 1053-1088, (2010) · Zbl 1273.70030
[9] Evans, L. C., Envelopes and nonconvex Hamilton-Jacobi equations, Calc. Var. Partial Differ. Equ., (2013), in press
[10] Fathi, A., Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327, 3, 267-270, (1998) · Zbl 1052.37514
[11] Fathi, A.; Siconolfi, A., Existence of \(C^1\) critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155, 2, 363-388, (2004) · Zbl 1061.58008
[12] Ishii, H., Asymptotic solutions for large-time of Hamilton-Jacobi equations in Euclidean n space, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 25, 2, 231-266, (2008) · Zbl 1145.35035
[13] Ley, O.; Nguyen, V. D., Large time behavior for some nonlinear degenerate parabolic equations, preprint
[14] Mitake, H.; Tran, H. V., Remarks on the large-time behavior of viscosity solutions of quasi-monotone weakly coupled systems of Hamilton-Jacobi equations, Asymptot. Anal., 77, 43-70, (2012) · Zbl 1241.35020
[15] Mitake, H.; Tran, H. V., Homogenization of weakly coupled systems of Hamilton-Jacobi equations with fast switching rates, Arch. Ration. Mech. Anal., (2013), in press
[16] Mitake, H.; Tran, H. V., A dynamical approach to the large-time behavior of solutions to weakly coupled systems of Hamilton-Jacobi equations, J. Math. Pures Appl., (2013), in press · Zbl 1278.35020
[17] Mitake, H.; Tran, H. V., Large-time behavior for obstacle problems for degenerate viscous Hamilton-Jacobi equations · Zbl 1327.35065
[18] Namah, G.; Roquejoffre, J.-M., Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Commun. Partial Differ. Equ., 24, 5-6, 883-893, (1999) · Zbl 0924.35028
[19] Nguyen, V. D., Some results on the large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations, preprint
[20] Stroock, D. W.; Varadhan, S. R.S., Multidimensional diffusion processes, Classics Math., (2006), Springer-Verlag Berlin, xii+338 pp · Zbl 1103.60005
[21] Tran, H. V., Adjoint methods for static Hamilton-Jacobi equations, Calc. Var. Partial Differ. Equ., 41, 301-319, (2011) · Zbl 1231.35043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.