×

Weak KAM theory for discounted Hamilton-Jacobi equations and its application. (English) Zbl 1403.35083

Summary: Weak KAM theory for discounted Hamilton-Jacobi equations and corresponding discounted Lagrangian/Hamiltonian dynamics is developed. Then, it is applied to error estimates for viscosity solutions in the vanishing discount process. The main feature is to introduce and investigate the family of \(\alpha \)-limit points of minimizing curves, with some details in terms of minimizing measures. In error estimates, the family of \(\alpha \)-limit points is effectively exploited with properties of the corresponding dynamical systems.

MSC:

35F21 Hamilton-Jacobi equations
35B40 Asymptotic behavior of solutions to PDEs
37J50 Action-minimizing orbits and measures (MSC2010)
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35D40 Viscosity solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anantharaman, N, On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics, J. Eur. Math. Soc., 6, 207-276, (2004) · Zbl 1169.82302 · doi:10.4171/JEMS/9
[2] Anantharaman, N; Iturriaga, R; Padilla, P; Sanchez-Morgado, H, Physical solutions of the Hamilton-Jacobi equation, Discret. Contin. Dyn. Syst. Ser. B, 5, 513-528, (2005) · Zbl 1081.37036 · doi:10.3934/dcdsb.2005.5.513
[3] Bernard, P, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier Grenoble, 52, 1533-1568, (2002) · Zbl 1008.37035 · doi:10.5802/aif.1924
[4] Bessi, U, Aubry-Mather theory and Hamilton-Jacobi equations, Commun. Math. Phys., 235, 495-511, (2003) · Zbl 1023.37034 · doi:10.1007/s00220-002-0781-5
[5] Bourgain, J; Golse, F; Wennberg, B, On the distribution of free path lengths for the periodic Lorentz gas, Commun. Math. Phys., 190, 491-508, (1998) · Zbl 0910.60082 · doi:10.1007/s002200050249
[6] Camilli, F; Capuzzo Dolcetta, I; Gomes, DA, Error estimates for the approximation of the effective Hamiltonian, Appl. Math. Optim., 57, 30-57, (2008) · Zbl 1140.49023 · doi:10.1007/s00245-007-9006-9
[7] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhäuser, Basel (2004) · Zbl 1095.49003
[8] Davini, A; Fathi, A; Iturriaga, R; Zavidovique, M, Convergence of the solutions of the discounted equation, Invent. Math., 206, 29-55, (2016) · Zbl 1362.35094 · doi:10.1007/s00222-016-0648-6
[9] Davini, A; Fathi, A; Iturriaga, R; Zavidovique, M, Convergence of the solutions of the discounted equation: the discrete case, Math. Z., 284, 1021-1034, (2016) · Zbl 1352.37170 · doi:10.1007/s00209-016-1685-y
[10] Dumas, HS, Ergodization rates for linear flow on the torus, J. Dyn. Differ. Equ., 3, 593-610, (1991) · Zbl 0745.58032 · doi:10.1007/BF01049101
[11] E, W.: Aubry-Mather theory and periodic solutions of the forced Burgers equation. Commun. Pure Appl. Math. 52(7), 811-828 (1999)
[12] Evans, LC; Gomes, D, Effective Hamiltonians and averaging for Hamiltonian dynamics I, Arch. Ration. Mech. Anal., 157, 1-33, (2001) · Zbl 0986.37056 · doi:10.1007/PL00004236
[13] Fathi, A, A weak KAM theorem and mather’s theory of Lagrangian systems [théorème KAM faible et théorie de Mather sur LES systèmes lagrangiens, (French)], C. R. Acad. Sci. Paris Sér. I Math., 324, 1043-1046, (1997) · Zbl 0885.58022 · doi:10.1016/S0764-4442(97)87883-4
[14] Fathi, A, Heteroclinic orbits and the Peierls set [orbites hétéroclines et ensemble de Peierls, (French)], C. R. Acad. Sci. Paris Sér. I Math., 326, 1213-1216, (1998) · Zbl 0915.58033 · doi:10.1016/S0764-4442(98)80230-9
[15] Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. Cambridge University Press, Cambridge (2011)
[16] Gomes, DA, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of aubry-Mather sets, SIAM J. Math. Anal., 35, 135-147, (2003) · Zbl 1034.37035 · doi:10.1137/S0036141002405960
[17] Gomes, DA, Generalized Mather problem and selection principles for viscosity solutions and Mather measures, Adv. Calc. Var., 1, 291-307, (2008) · Zbl 1181.37090 · doi:10.1515/ACV.2008.012
[18] Gomes, DA; Mitake, H; Tran, HV, The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases, J. Math. Soc. Jpn., 70, 345-364, (2018) · Zbl 1403.35082 · doi:10.2969/jmsj/07017534
[19] Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Applied Mathematical Sciences, vol. 42. Springer, New York (1990). ISBN 0-387-90819-6 · Zbl 0515.34001
[20] Ishii, H; Mitake, H; Tran, HV, The vanishing discount problem and viscosity Mather measures. part 1: the problem on a torus, J. Math. Pures Appl. (9), 108, 125-149, (2017) · Zbl 1375.35182 · doi:10.1016/j.matpur.2016.10.013
[21] Jauslin, HR; Kreiss, HO; Moser, J, On the forced Burgers equation with periodic boundary conditions, Proc. Symp. Pure Math., 65, 133-153, (1999) · Zbl 0930.35156 · doi:10.1090/pspum/065/1662751
[22] Le, N. Q., Mitake, H., Tran, H. V.: Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampere Equations. Lecture Notes in Mathematics, vol. 2183. Springer (2017). https://doi.org/10.1007/978-3-319-54208-9 · Zbl 1373.35006
[23] Mañé, R, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9, 273-310, (1996) · Zbl 0886.58037 · doi:10.1088/0951-7715/9/2/002
[24] Marò, S; Sorrentino, A, Aubry-Mather theory for conformally symplectic systems, Commun. Math. Phys., 354, 775-808, (2017) · Zbl 1380.37117 · doi:10.1007/s00220-017-2900-3
[25] Mather, J, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 43, 169-207, (1991) · Zbl 0696.58027 · doi:10.1007/BF02571383
[26] Mitake, H; Tran, HV, Selection problems for a discounted degenerate viscous Hamilton-Jacobi equation, Adv. Math., 306, 684-703, (2017) · Zbl 1357.35090 · doi:10.1016/j.aim.2016.10.032
[27] Soga, K, More on stochastic and variational approach to the Lax-Friedrichs scheme, Math. Comput., 85, 2161-2193, (2016) · Zbl 1342.65176 · doi:10.1090/mcom/3061
[28] Soga, K, Selection problems of \({\mathbb{Z}}^2\)-periodic entropy solutions and viscosity solutions, Calc. Var. PDEs, 56, 4, (2017) · Zbl 1388.35128 · doi:10.1007/s00526-017-1208-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.