×

zbMATH — the first resource for mathematics

Rate of convergence in periodic homogenization of Hamilton-Jacobi equations: the convex setting. (English) Zbl 1416.35034
The paper under review deals with the investigation of the rate of convergence in periodic homogenization of Hamilton-Jacobi equations. The authors consider the solutions \(u^\epsilon\) of the problem \[ \begin{cases} u^\epsilon_t +H(x/\epsilon,Du^\epsilon)=0 & \mathrm{in}\quad \mathbb{R}^n\times (0,+\infty),\\ u^\epsilon(x,0)=g(x) & \mathrm{on}\quad \mathbb{R}^n, \end{cases} \] where the Hamiltonian \(H=H(y,p)\) is coercive and convex in the \(p\) variable and \(\mathbb{Z}^n\)-periodic in the \(y\) variable, and the initial data \(g\) is bounded and Lipschitz continuous. The authors obtain estimates on the rate of convergence of \(u^\epsilon\) as \(\epsilon\to 0\) to the solution \(u\) of the homogenized problem \[ \begin{cases} u +\overline{H}(Du)=0 & \mathrm{in}\quad \mathbb{R}^n\times (0,+\infty),\\ u(x,0)=g(x) & \mathrm{on}\quad \mathbb{R}^n, \end{cases} \] where \(\overline{H}\) is the effective Hamiltonian.

MSC:
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35F21 Hamilton-Jacobi equations
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Armstrong, SN; Cardaliaguet, P.; Souganidis, PE, Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations, J. Am. Math. Soc., 27, 479-540, (2014) · Zbl 1286.35023
[2] Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, Second edition, Grundlehren der mathematischen Wissenschaften, Vol. 250, Springer, 1988
[3] Bangert, V.: Mather Sets for Twist Maps and Geodesics on Tori, Dynamics Reported, Vol. 1, 1988
[4] Bangert, V., Minimal geodesics. Ergod. Th, Dyn. Syst., 10, 263-286, (1989)
[5] Bangert, V., Geodesic rays, Busemann functions and monotone twist maps, Calc. Var. Partial Differ. Equ., 2, 49-63, (1994) · Zbl 0794.58010
[6] Bernard, P., The asymptotic behaviour of solutions of the forced Burgers equation on the circle, Nonlinearity, 18, 101-124, (2005) · Zbl 1086.35086
[7] Camilli, F.; Cesaroni, A.; Marchi, C., Homogenization and vanishing viscosity in fully nonlinear elliptic equations: rate of convergence estimates, Adv. Nonlinear Stud., 11, 405-428, (2011) · Zbl 1223.35041
[8] Carneiro, MJ, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, 8, 1077-1085, (1995) · Zbl 0845.58023
[9] Capuzzo-Dolcetta, I.; Ishii, H., On the rate of convergence in homogenization of Hamilton-Jacobi equations, Indiana Univ. Math. J., 50, 1113-1129, (2001) · Zbl 1256.35003
[10] Weinan, E., Aubry-Mather theory and periodic solutions of the forced Burgers equation, Commun. Pure Appl. Math., 52, 811-828, (1999) · Zbl 0916.35099
[11] Evans, LC, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. R. Soc. Edinburgh Sect. A, 120, 245-265, (1992) · Zbl 0796.35011
[12] Evans, LC; Gomes, D., Effective Hamiltonians and Averaging for Hamiltonian Dynamics, I. Arch. Ration. Mech. Anal., 157, 1-33, (2001) · Zbl 0986.37056
[13] Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics
[14] Gomes, DA, Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems, Calc. Var., 14, 345-357, (2002) · Zbl 1005.49027
[15] Hedlund, GA, Geodesies on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33, 719-739, (1932) · JFM 58.1256.01
[16] Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi Equations, unpublished work, 1987
[17] Luo, S.; Yu, Y.; Zhao, H., A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations, Multiscale Model. Simul., 9, 711-734, (2011) · Zbl 1241.35012
[18] Mitake, H.; Tran, HV, Homogenization of weakly coupled systems of Hamilton-Jacobi equations with fast switching rates, Arch. Ration. Mech. Anal., 211, 733-769, (2014) · Zbl 1297.35022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.